A New Approach for Studying Nonlinear Dynamic Response of a Thin Fractionally Damped Cylindrical Shell with Internal Resonances of the Order of $$\varepsilon $$

Author(s):  
Marina V. Shitikova ◽  
Yury A. Rossikhin
2013 ◽  
Vol 631-632 ◽  
pp. 864-869
Author(s):  
Fu Yin Gao ◽  
Yuan Long ◽  
Chong Ji ◽  
Chang Xiao Zhang

Experimental researches were presented on dynamic characteristics of Q235 steel cylindrical shell impacted-explosive laterally by 75g cylindrical TNT dynamite at the center.The dynamic response was obtained under different distances with different setting ways of explosive sources.By means of an explicit nonlinear dynamic finite element computer code LS-DYNA,the nonlinear dynamic response process of cylindrical shell subjected to laterally explosion loading were numerically simulated with ALE coupling method. The numerical simulation results were in good agreement with experimental data. The results provided important reference for the blast-resistant properties analysis and safety assessment of oil-gas pipes safety.


2012 ◽  
Vol 204-208 ◽  
pp. 4698-4701
Author(s):  
Jin Hua Yang ◽  
De Liang Chen

Abstract. On the basis of the nonlinear plate-shell and piezoelectric theory, the governing equations of motion for axisymmetrical piezoelectric delaminated cylindrical shell under hygrothermal conditions were derived. The governing equation of transverse motion was modified by contact force and thus the penetration between two delaminated layers could be avoided. The whole problem was resolved by using the finite difference method. In calculation examples, the effects of delamination length, depth and amplitude of load on the nonlinear dynamic response of the axisymmetrical piezoelectric delaminated shell under hygrothermal conditions were discussed in detail.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Y. X. Hao ◽  
W. Zhang ◽  
X. L. Ji

The nonlinear dynamic response of functionally graded rectangular plates under combined transverse and in-plane excitations is investigated under the conditions of 1 : 1, 1 : 2 and 1 : 3 internal resonance. The material properties are assumed to be temperature-dependent and vary along the thickness direction. The thermal effect due to one-dimensional temperature gradient is included in the analysis. The governing equations of motion for FGM rectangular plates are derived by using Reddy's third-order plate theory and Hamilton's principle. Galerkin's approach is utilized to reduce the governing differential equations to a two-degree-of-freedom nonlinear system including quadratic and cubic nonlinear terms, which are then solved numerically by using 4th-order Runge-Kutta algorithm. The effects of in-plane excitations on the internal resonance relationship and nonlinear dynamic response of FGM plates are studied.


Sign in / Sign up

Export Citation Format

Share Document