Natural Systems Engineering

Author(s):  
Derek Hitchins
1999 ◽  
Vol 40 (11-12) ◽  
pp. 21-24
Author(s):  
Tapio Pento

Industrial ecology (IE) is a biological concept applied to industrial structures. The basic concepts of IE include regional, intra-firm and product-based waste recycling systems as well as the principle of upward and downward cascading. In best current examples of regional systems, several parties are in an industrial waste re-use symbiosis. Paper industry has learned to arrange the recovery and re-use of its products on distant markets, even up to a level where indications of exceeding optimal recovery and re-use rates already exist through deteriorated fibre and product quality. Such occurrences will take place in certain legislative-economic situations. Paper industry has many cascade levels, each with their internal recovery and recycling, as well as many intra-firm, regional, and life cycle ecology structures. As an example of prospects for individual cascading routes, sludges may continue to be incinerated, but the route to landfills will be closed. The main obstacles of legislative drive toward better IE systems are in many cases existing laws and political considerations rather than economic or technical aspects. The study and practice of engineering human technology systems and related elements of natural systems should develop in such a way that they provide quality of life by actively managing the dynamics of relevant systems to reduce the risk and scale of undesirable behavior and outcomes. For the paper industry, earth systems engineering offers several development routes. One of them is the further recognition of and research on the fact that the products of the industry are returned back to the carbon cycle of the natural environment. Opportunities for modifying current earth systems may also be available for the industry, e.g. genetically modified plants for raw materials or organisms for making good quality pulp out of current raw materials. It is to be recognized that earth systems engineering may become a very controversial area, and that very diverse political pressures may determine its future usefulness to the paper industry.


Author(s):  
Russell Kerschmann ◽  
Joel Levine ◽  
George Studor ◽  
Lloyd Keith ◽  
Daniel Winterhalter

Author(s):  
Leandro Nunes de Castro ◽  
Rafael Silveira Xavier ◽  
Rodrigo Pasti ◽  
Renato Dourado Maia ◽  
Alexandre Szabo ◽  
...  

An important premise of Natural Computing is that some form of computation goes on in Nature, and that computing capability has to be understood, modeled, abstracted, and used for different objectives and in different contexts. Therefore, it is necessary to propose a new language capable of describing and allowing the comprehension of natural systems as a union of computing phenomena, bringing an information processing perspective to Nature. To develop this new language and convert Natural Computing into a new science it is imperative to overcome three specific Grand Challenges in Natural Computing Research: Transforming Natural Computing into a Transdisciplinary Discipline, Unveiling and Harnessing Information Processing in Natural Systems, Engineering Natural Computing Systems.


Insight ◽  
2016 ◽  
Vol 19 (1) ◽  
pp. 12-15
Author(s):  
Curt McNamara ◽  
George M. Studor ◽  
Lawrence D. Pohlmann

2011 ◽  
Vol 2 (4) ◽  
pp. 17-30 ◽  
Author(s):  
Leandro Nunes de Castro ◽  
Rafael Silveira Xavier ◽  
Rodrigo Pasti ◽  
Renato Dourado Maia ◽  
Alexandre Szabo ◽  
...  

An important premise of Natural Computing is that some form of computation goes on in Nature, and that computing capability has to be understood, modeled, abstracted, and used for different objectives and in different contexts. Therefore, it is necessary to propose a new language capable of describing and allowing the comprehension of natural systems as a union of computing phenomena, bringing an information processing perspective to Nature. To develop this new language and convert Natural Computing into a new science it is imperative to overcome three specific Grand Challenges in Natural Computing Research: Transforming Natural Computing into a Transdisciplinary Discipline, Unveiling and Harnessing Information Processing in Natural Systems, Engineering Natural Computing Systems.


2020 ◽  
Vol 43 ◽  
Author(s):  
Valerie F. Reyna ◽  
David A. Broniatowski

Abstract Gilead et al. offer a thoughtful and much-needed treatment of abstraction. However, it fails to build on an extensive literature on abstraction, representational diversity, neurocognition, and psychopathology that provides important constraints and alternative evidence-based conceptions. We draw on conceptions in software engineering, socio-technical systems engineering, and a neurocognitive theory with abstract representations of gist at its core, fuzzy-trace theory.


Author(s):  
L. P. Hardie ◽  
D. L. Balkwill ◽  
S. E. Stevens

Agmenellum quadruplicatum is a unicellular, non-nitrogen-fixing, marine cyanobacterium (blue-green alga). The ultrastructure of this organism, when grown in the laboratory with all necessary nutrients, has been characterized thoroughly. In contrast, little is known of its ultrastructure in the specific nutrient-limiting conditions typical of its natural habitat. Iron is one of the nutrients likely to limit this organism in such natural environments. It is also of great importance metabolically, being required for both photosynthesis and assimilation of nitrate. The purpose of this study was to assess the effects (if any) of iron limitation on the ultrastructure of A. quadruplicatum. It was part of a broader endeavor to elucidate the ultrastructure of cyanobacteria in natural systemsActively growing cells were placed in a growth medium containing 1% of its usual iron. The cultures were then sampled periodically for 10 days and prepared for thin sectioning TEM to assess the effects of iron limitation.


Sign in / Sign up

Export Citation Format

Share Document