Statistical Compact Model Extraction for Skewed Gaussian Variations

Author(s):  
V. Janakiraman ◽  
Shrinivas J. Pandharpure ◽  
Josef Watts
Author(s):  
Sriramkumar Venugopalan ◽  
Krishnanshu Dandu ◽  
Samuel Martin ◽  
Richard Taylor ◽  
Claude Cirba ◽  
...  

2012 ◽  
Vol 48 (2) ◽  
pp. 431-434 ◽  
Author(s):  
Gabriela Ciuprina ◽  
Daniel Ioan ◽  
Ioan Alexandru Lazar ◽  
Cosmin Bogdan Dita

2010 ◽  
Vol 54 (3) ◽  
pp. 307-315 ◽  
Author(s):  
B. Bindu ◽  
B. Cheng ◽  
G. Roy ◽  
X. Wang ◽  
S. Roy ◽  
...  

2020 ◽  
Vol 14 (5) ◽  
pp. 576-585
Author(s):  
Koduru Revanth ◽  
Viraraghavan Janakiraman

2015 ◽  
Vol 62 (10) ◽  
pp. 3139-3146 ◽  
Author(s):  
Xingsheng Wang ◽  
Binjie Cheng ◽  
David Reid ◽  
Andrew Pender ◽  
Plamen Asenov ◽  
...  

Author(s):  
Janakiraman Viraraghavan ◽  
Shrinivas J. Pandharpure ◽  
Josef Watts

2010 ◽  
Vol E93-C (8) ◽  
pp. 1349-1358
Author(s):  
Kenta YAMADA ◽  
Toshiyuki SYO ◽  
Hisao YOSHIMURA ◽  
Masaru ITO ◽  
Tatsuya KUNIKIYO ◽  
...  
Keyword(s):  

2020 ◽  
Vol 2020 (14) ◽  
pp. 378-1-378-7
Author(s):  
Tyler Nuanes ◽  
Matt Elsey ◽  
Radek Grzeszczuk ◽  
John Paul Shen

We present a high-quality sky segmentation model for depth refinement and investigate residual architecture performance to inform optimally shrinking the network. We describe a model that runs in near real-time on mobile device, present a new, highquality dataset, and detail a unique weighing to trade off false positives and false negatives in binary classifiers. We show how the optimizations improve bokeh rendering by correcting stereo depth misprediction in sky regions. We detail techniques used to preserve edges, reject false positives, and ensure generalization to the diversity of sky scenes. Finally, we present a compact model and compare performance of four popular residual architectures (ShuffleNet, MobileNetV2, Resnet-101, and Resnet-34-like) at constant computational cost.


Sign in / Sign up

Export Citation Format

Share Document