A Parameter-Uniform Numerical Method for a Boundary Value Problem for a Singularly Perturbed Delay Differential Equation

Author(s):  
M. Manikandan ◽  
N. Shivaranjani ◽  
J. J. H. Miller ◽  
S. Valarmathi
2018 ◽  
Vol 23 (4) ◽  
pp. 568-581 ◽  
Author(s):  
Erkan Cimen

Difference method on a piecewise uniform mesh of Shishkin type, for a singularly perturbed boundary-value problem for a nonlinear second order delay differential equation is analyzed. Also, the method is proved that it gives essentially first order parameter-uniform convergence in the discrete maximum norm. Furthermore, numerical results are presented in support of the theory.


Author(s):  
М.Г. Мажгихова

В работе доказана теорема существования и единственности решения краевой задачи со смещением для дифференциального уравнения дробного порядка с запаздывающим аргументом. Решение задачи выписано в терминах функции Грина. Получено условие однозначной разрешимости и показано, что оно может нарушаться только конечное число раз. In this paper we prove existence and uniqueness theorem to a boundary value problem with shift for a fractional order ordinary delay differential equation. The solution of the problem is written out in terms of the Green function. We find an explicit representation for solvability condition and show that it may only be violated a finite number of times


Sign in / Sign up

Export Citation Format

Share Document