Investigation of Mutation Strategies in Differential Evolution for Solving Global Optimization Problems

Author(s):  
Miguel Leon ◽  
Ning Xiong
2018 ◽  
Vol 8 (10) ◽  
pp. 1945 ◽  
Author(s):  
Tarik Eltaeib ◽  
Ausif Mahmood

Differential evolution (DE) has been extensively used in optimization studies since its development in 1995 because of its reputation as an effective global optimizer. DE is a population-based metaheuristic technique that develops numerical vectors to solve optimization problems. DE strategies have a significant impact on DE performance and play a vital role in achieving stochastic global optimization. However, DE is highly dependent on the control parameters involved. In practice, the fine-tuning of these parameters is not always easy. Here, we discuss the improvements and developments that have been made to DE algorithms. In particular, we present a state-of-the-art survey of the literature on DE and its recent advances, such as the development of adaptive, self-adaptive and hybrid techniques.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Ali Wagdy Mohamed ◽  
Abdulaziz S. Almazyad

This paper presents Differential Evolution algorithm for solving high-dimensional optimization problems over continuous space. The proposed algorithm, namely, ANDE, introduces a new triangular mutation rule based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vectors between the best, better, and the worst individuals among the three randomly selected vectors. The mutation rule is combined with the basic mutation strategy DE/rand/1/bin, where the new triangular mutation rule is applied with the probability of 2/3 since it has both exploration ability and exploitation tendency. Furthermore, we propose a novel self-adaptive scheme for gradual change of the values of the crossover rate that can excellently benefit from the past experience of the individuals in the search space during evolution process which in turn can considerably balance the common trade-off between the population diversity and convergence speed. The proposed algorithm has been evaluated on the 20 standard high-dimensional benchmark numerical optimization problems for the IEEE CEC-2010 Special Session and Competition on Large Scale Global Optimization. The comparison results between ANDE and its versions and the other seven state-of-the-art evolutionary algorithms that were all tested on this test suite indicate that the proposed algorithm and its two versions are highly competitive algorithms for solving large scale global optimization problems.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yuehe Zhu ◽  
Hua Wang ◽  
Jin Zhang

Since most spacecraft multiple-impulse trajectory optimization problems are complex multimodal problems with boundary constraint, finding the global optimal solution based on the traditional differential evolution (DE) algorithms becomes so difficult due to the deception of many local optima and the probable existence of a bias towards suboptimal solution. In order to overcome this issue and enhance the global searching ability, an improved DE algorithm with combined mutation strategies and boundary-handling schemes is proposed. In the first stage, multiple mutation strategies are utilized, and each strategy creates a mutant vector. In the second stage, multiple boundary-handling schemes are used to simultaneously address the same infeasible trial vector. Two typical spacecraft multiple-impulse trajectory optimization problems are studied and optimized using the proposed DE method. The experimental results demonstrate that the proposed DE method efficiently overcomes the problem created by the convergence to a local optimum and obtains the global optimum with a higher reliability and convergence rate compared with some other popular evolutionary methods.


Sign in / Sign up

Export Citation Format

Share Document