Finite Time Stabilization of Fractional Order Systems

Author(s):  
Bijnan Bandyopadhyay ◽  
Shyam Kamal
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Lassaad Mchiri ◽  
Abdellatif Ben Makhlouf ◽  
Dumitru Baleanu ◽  
Mohamed Rhaima

AbstractThis paper focuses on the finite-time stability of linear stochastic fractional-order systems with time delay for $\alpha \in (\frac{1}{2},1)$ α ∈ ( 1 2 , 1 ) . Under the generalized Gronwall inequality and stochastic analysis techniques, the finite-time stability of the solution for linear stochastic fractional-order systems with time delay is investigated. We give two illustrative examples to show the interest of the main results.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Cui Yan ◽  
He Hongjun ◽  
Lu Chenhui ◽  
Sun Guan

Fractional order systems have a wider range of applications. Hidden attractors are a peculiar phenomenon in nonlinear systems. In this paper, we construct a fractional-order chaotic system with hidden attractors based on the Sprott C system. According to the Adomain decomposition method, we numerically simulate from several algorithms and study the dynamic characteristics of the system through bifurcation diagram, phase diagram, spectral entropy, and C0 complexity. The results of spectral entropy and C0 complexity simulations show that the system is highly complex. In order to apply such research results to engineering practice, for such fractional-order chaotic systems with hidden attractors, we design a controller to synchronize according to the finite-time stability theory. The simulation results show that the synchronization time is short and the robustness is stable. This paper lays the foundation for the study of fractional order systems with hidden attractors.


2022 ◽  
Vol 27 (1) ◽  
pp. 1-18
Author(s):  
Chaouki Aouiti ◽  
Jinde Cao ◽  
Hediene Jallouli ◽  
Chuangxia Huang

This paper deals with the finite-time stabilization of fractional-order inertial neural network with varying time-delays (FOINNs). Firstly, by correctly selected variable substitution, the system is transformed into a first-order fractional differential equation. Secondly, by building Lyapunov functionalities and using analytical techniques, as well as new control algorithms (which include the delay-dependent and delay-free controller), novel and effective criteria are established to attain the finite-time stabilization of the addressed system. Finally, two examples are used to illustrate the effectiveness and feasibility of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document