Weak Solutions to 2D and 3D Compressible Navier-Stokes Equations in Critical Cases

Author(s):  
P. I. Plotnikov ◽  
W. Weigant
2007 ◽  
Vol 2007 ◽  
pp. 1-30 ◽  
Author(s):  
Adriana-Ioana Lefter

We study Navier-Stokes equations perturbed with a maximal monotone operator, in a bounded domain, in 2D and 3D. Using the theory of nonlinear semigroups, we prove existence results for strong and weak solutions. Examples are also provided.


2017 ◽  
Vol 20 (01) ◽  
pp. 1650064 ◽  
Author(s):  
Luigi C. Berselli ◽  
Stefano Spirito

We prove that suitable weak solutions of 3D Navier–Stokes equations in bounded domains can be constructed by a particular type of artificial compressibility approximation.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.


Sign in / Sign up

Export Citation Format

Share Document