NUMERICAL SOLUTIONS OF 2D AND 3D SLAMMING PROBLEMS

2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.

Author(s):  
Qingyong Yang ◽  
Wei Qiu

This paper presents the numerical solutions of slamming problems for 3D bodies entering calm water with vertical and oblique velocities. The highly nonlinear water entry problems are governed by the Navier-Stokes equations and were solved by a constrained interpolation profile (CIP)-based finite difference method on a fixed Cartesian grid. In the computation, the 3D CIP method was employed for the advection calculations and a pressure-based algorithm was applied for the nonadvection calculations. The solid body and the free surface interfaces were captured by density functions. For the pressure computation, a Poisson-type equation was solved at each time step by using the conjugate gradient iterative method. Validation studies were carried out for a 3D wedge, a cusped body vertically entering calm water, and the oblique entry of a sphere into calm water. The predicted hydrodynamic forces on the wedge, the cusped body, and the sphere were compared with experimental data.


Author(s):  
Qingyong Yang ◽  
Wei Qiu

This paper presents the numerical solutions of slamming problems for 3D bodies entering calm water. The highly nonlinear water entry problems are governed by the Navier-Stokes equations and were solved by a Constrained Interpolation Profile (CIP)-based finite difference method on a fixed Cartesian grid. In the computation, the 3D CIP method was employed for the advection calculations and a pressured-based algorithm was applied for non-advection calculations. The solid body and the free surface interfaces were captured by density functions. For the pressure computation, a Poisson-type equation was solved at each time step by the Conjugate Gradient iterative method. Validation studies were carried out for a 3D wedge entering calm water and the entry of a sphere into calm water at both vertical and horizontal velocities. The predicted hydrodynamic forces on the wedge and the sphere were compared with experimental data.


This paper concerns the two-dimensional motion of a viscous liquid down a perturbed inclined plane under the influence of gravity, and the main goal is the prediction of the surface height as the fluid flows over the perturbations. The specific perturbations chosen for the present study were two humps stretching laterally across an otherwise uniform plane, with the flow being confined in the lateral direction by the walls of a channel. Theoretical predictions of the flow have been obtained by finite-element approximations to the Navier-Stokes equations and also by a variety of lubrication approximations. The predictions from the various models are compared with experimental measurements of the free-surface profiles. The principal aim of this study is the establishment and assessment of certain numerical and asymptotic models for the description of a class of free-surface flows, exemplified by the particular case of flow over a perturbed inclined plane. The laboratory experiments were made over a range of flow rates such that the Reynolds number, based on the volume flux per unit width and the kinematical viscosity of the fluid, ranged between 0.369 and 36.6. It was found that, at the smaller Reynolds numbers, a standard lubrication approximation provided a very good representation of the experimental measurements but, as the flow rate was increased, the standard model did not capture several important features of the flow. On the other hand, a lubrication approximation allowing for surface tension and inertial effects expanded the range of applicability of the basic theory by almost an order of magnitude, up to Reynolds numbers approaching 10. At larger flow rates, numerical solutions to the full equations of motion provided a description of the experimental results to within about 4% , up to a Reynolds number of 25, beyond which we were unable to obtain numerical solutions. It is not known why numerical solutions were not possible at larger flow rates, but it is possible that there is a bifurcation of the Navier-Stokes equations to a branch of unsteady motions near a Reynolds number of 25.


1992 ◽  
Vol 236 ◽  
pp. 461-476 ◽  
Author(s):  
Hans J. Lugt ◽  
Samuel Ohring

The problem of a vortex pair, rising obliquely at an angle of 45° toward a deformable free surface in a viscous, incompressible fluid, is solved with the aid of the Navier—Stokes equations. The full nonlinear boundary conditions at the free surface are applied. The oblique interaction of the vortex pair with the free surface results in a number of novel features that have not been observed for the special case of a vertical rise, reported earlier. These features include the directional change of trajectories near the free surface and the occurrence of waves driven by the vortex pair. Moreover, surface tension can completely change the flow characteristics such as the direction of the trajectories and the generation of secondary vortices. Numerical solutions are presented for selected Reynolds, Froude, and Weber numbers.


2018 ◽  
Vol 52 (4) ◽  
pp. 1417-1436
Author(s):  
Vincent Bruneau ◽  
Adrien Doradoux ◽  
Pierre Fabrie

In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with a penalization method introducing a parameter η to enforce the velocity on the solid boundary. The incompressibility constraint is approached using a Vector Projection method which introduces a relaxation parameter ε. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the relaxation parameter ε and the time step δt tend to zero with a proportionality constraint ε = λδt. Finally, when η goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-slip condition on the solid boundary.


Author(s):  
Alexander Danilov ◽  
Alexander Lozovskiy ◽  
Maxim Olshanskii ◽  
Yuri Vassilevski

AbstractThe paper introduces a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method is based on a quasi-Lagrangian formulation of the problem and handling the geometry in a time-explicit way. We prove that numerical solution satisfies a discrete analogue of the fundamental energy estimate. This stability estimate does not require a CFL time-step restriction. The method is further applied to simulation of a flow in a model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.


1989 ◽  
Vol 209 ◽  
pp. 285-308 ◽  
Author(s):  
R. J. Bodonyi ◽  
W. J. C. Welch ◽  
P. W. Duck ◽  
M. Tadjfar

A numerical study of the generation of Tollmien-Schlichting (T–S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite–difference and spectral methods. The nonlinear steady flow is of the viscous–inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier–Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T–S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T–S waves.


Author(s):  
B. Elie ◽  
G. Reliquet ◽  
P.-E. Guillerm ◽  
O. Thilleul ◽  
P. Ferrant ◽  
...  

This paper compares numerical and experimental results in the study of the resonance phenomenon which appears between two side-by-side fixed barges for different sea-states. Simulations were performed using SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach and results are compared with experimental data on two fixed barges with different headings and bilges. Numerical results, obtained using the SWENSE approach, are able to predict both the frequency and the magnitude of the RAO functions.


Author(s):  
Bogdan Iwanowski ◽  
Henrik Grigorian ◽  
Ingar Scherf

Subsidence of the Ekofisk platforms creates several operational challenges. For safety of the platforms, it is of great importance to find the wave impact loads acting on the platforms’ decks. The paper describes how such loads can be computed. Three theoretical wave models are discussed in the paper: the Airy wave, Airy wave modified through Wheeler stretching and the 5th order non-linear Stokes wave. The wave loads for these wave models are computed by various methods. The method based on momentum displacement approach and Morison-type equation developed by Dr. Kaplan is used as a reference point. The loads are also computed through a solution of complete Navier-Stokes equations, with the Volume of Fluid (VOF) method used to trace motion of the fluid’s free surface. Results of different wave models and different computational methods are compared and discussed.


Sign in / Sign up

Export Citation Format

Share Document