SepStore: Data Storage Accelerator for Distributed File Systems by Separating Small Files from Large Files

Author(s):  
Zhenzhao Wang ◽  
Kang Chen ◽  
Yongwei Wu ◽  
Weimin Zheng
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1471
Author(s):  
Jun-Yeong Lee ◽  
Moon-Hyun Kim ◽  
Syed Asif Raza Raza Shah ◽  
Sang-Un Ahn ◽  
Heejun Yoon ◽  
...  

Data are important and ever growing in data-intensive scientific environments. Such research data growth requires data storage systems that play pivotal roles in data management and analysis for scientific discoveries. Redundant Array of Independent Disks (RAID), a well-known storage technology combining multiple disks into a single large logical volume, has been widely used for the purpose of data redundancy and performance improvement. However, this requires RAID-capable hardware or software to build up a RAID-enabled disk array. In addition, it is difficult to scale up the RAID-based storage. In order to mitigate such a problem, many distributed file systems have been developed and are being actively used in various environments, especially in data-intensive computing facilities, where a tremendous amount of data have to be handled. In this study, we investigated and benchmarked various distributed file systems, such as Ceph, GlusterFS, Lustre and EOS for data-intensive environments. In our experiment, we configured the distributed file systems under a Reliable Array of Independent Nodes (RAIN) structure and a Filesystem in Userspace (FUSE) environment. Our results identify the characteristics of each file system that affect the read and write performance depending on the features of data, which have to be considered in data-intensive computing environments.


2018 ◽  
Vol 210 ◽  
pp. 04042
Author(s):  
Ammar Alhaj Ali ◽  
Pavel Varacha ◽  
Said Krayem ◽  
Roman Jasek ◽  
Petr Zacek ◽  
...  

Nowadays, a wide set of systems and application, especially in high performance computing, depends on distributed environments to process and analyses huge amounts of data. As we know, the amount of data increases enormously, and the goal to provide and develop efficient, scalable and reliable storage solutions has become one of the major issue for scientific computing. The storage solution used by big data systems is Distributed File Systems (DFSs), where DFS is used to build a hierarchical and unified view of multiple file servers and shares on the network. In this paper we will offer Hadoop Distributed File System (HDFS) as DFS in big data systems and we will present an Event-B as formal method that can be used in modeling, where Event-B is a mature formal method which has been widely used in a number of industry projects in a number of domains, such as automotive, transportation, space, business information, medical device and so on, And will propose using the Rodin as modeling tool for Event-B, which integrates modeling and proving as well as the Rodin platform is open source, so it supports a large number of plug-in tools.


Author(s):  
Rupali Ahuja ◽  
Jigyasa Malik ◽  
Ronak Tyagi ◽  
R. Brinda

Today, the world is revolving around Big Data. Each organization is trying hard to explore ways for deriving value out of huge pile of data we are generating each moment. Open Source Software are widely being adopted by most academicians, researchers and industrialists to handle various Big Data needs because of their easy availability, flexibility, affordability and interoperability. As a result, several open source Big Data tools have been developed. This chapter discusses the role of Open Source Software in Big Data Storage and how various organizations have benefitted from its use. It provides an overview of popular Open Source Big Data Storage technologies existing today. Distributed File Systems and NoSQL databases meant for storing Big Data have been discussed with their features, applications and comparison.


2019 ◽  
Vol 15 (S367) ◽  
pp. 464-466
Author(s):  
Paul Bartus

AbstractDuring the last years, the amount of data has skyrocketed. As a consequence, the data has become more expensive to store than to generate. The storage needs for astronomical data are also following this trend. Storage systems in Astronomy contain redundant copies of data such as identical files or within sub-file regions. We propose the use of the Hadoop Distributed and Deduplicated File System (HD2FS) in Astronomy. HD2FS is a deduplication storage system that was created to improve data storage capacity and efficiency in distributed file systems without compromising Input/Output performance. HD2FS can be developed by modifying existing storage system environments such as the Hadoop Distributed File System. By taking advantage of deduplication technology, we can better manage the underlying redundancy of data in astronomy and reduce the space needed to store these files in the file systems, thus allowing for more capacity per volume.


Author(s):  
Rupali Ahuja ◽  
Jigyasa Malik ◽  
Ronak Tyagi ◽  
R. Brinda

Today, the world is revolving around Big Data. Each organization is trying hard to explore ways for deriving value out of huge pile of data we are generating each moment. Open Source Software are widely being adopted by most academicians, researchers and industrialists to handle various Big Data needs because of their easy availability, flexibility, affordability and interoperability. As a result, several open source Big Data tools have been developed. This chapter discusses the role of Open Source Software in Big Data Storage and how various organizations have benefitted from its use. It provides an overview of popular Open Source Big Data Storage technologies existing today. Distributed File Systems and NoSQL databases meant for storing Big Data have been discussed with their features, applications and comparison.


Author(s):  
Sai Wu ◽  
Gang Chen ◽  
Xianke Zhou ◽  
Zhenjie Zhang ◽  
Anthony K. H. Tung ◽  
...  

2013 ◽  
Vol 49 (6) ◽  
pp. 2645-2652 ◽  
Author(s):  
Zhipeng Tan ◽  
Wei Zhou ◽  
Dan Feng ◽  
Wenhua Zhang

2021 ◽  
Vol 17 (3) ◽  
pp. 1-25
Author(s):  
Bohong Zhu ◽  
Youmin Chen ◽  
Qing Wang ◽  
Youyou Lu ◽  
Jiwu Shu

Non-volatile memory and remote direct memory access (RDMA) provide extremely high performance in storage and network hardware. However, existing distributed file systems strictly isolate file system and network layers, and the heavy layered software designs leave high-speed hardware under-exploited. In this article, we propose an RDMA-enabled distributed persistent memory file system, Octopus + , to redesign file system internal mechanisms by closely coupling non-volatile memory and RDMA features. For data operations, Octopus + directly accesses a shared persistent memory pool to reduce memory copying overhead, and actively fetches and pushes data all in clients to rebalance the load between the server and network. For metadata operations, Octopus + introduces self-identified remote procedure calls for immediate notification between file systems and networking, and an efficient distributed transaction mechanism for consistency. Octopus + is enabled with replication feature to provide better availability. Evaluations on Intel Optane DC Persistent Memory Modules show that Octopus + achieves nearly the raw bandwidth for large I/Os and orders of magnitude better performance than existing distributed file systems.


Sign in / Sign up

Export Citation Format

Share Document