Revisiting the Evaluation of Diversified Search Evaluation Metrics with User Preferences

Author(s):  
Fei Chen ◽  
Yiqun Liu ◽  
Zhicheng Dou ◽  
Keyang Xu ◽  
Yujie Cao ◽  
...  
Author(s):  
Dimitrios Nalmpantis ◽  
Dimitra Giannaka ◽  
Stavros Malliaris ◽  
Evangelos Genitsaris ◽  
Ioannis Karagiotas ◽  
...  

2016 ◽  
Vol 5 (3) ◽  
pp. 25
Author(s):  
BODHALE ASMITA P. ◽  
KULKARNI J.S. ◽  
◽  
Keyword(s):  

Author(s):  
А.Д. Обухов ◽  
М.Н. Краснянский ◽  
М.С. Николюкин

Рассматривается проблема выбора оптимальных параметров интерфейса в информационных системах с целью его персонализации под предпочтения пользователя и возможности его оборудования. В настоящее время для ее решения используется алгоритмическое обеспечение и статистическая обработка предпочтений пользователей, что не обеспечивает достаточной гибкости и точности. Поэтому в данной работе предлагается применение разработанного метода адаптации параметров интерфейса, основанного на анализе и обработке пользовательской информации с помощью нейронных сетей. Научная новизна метода заключается в автоматизации сбора, анализа данных и настройки интерфейса за счет использования и интеграции нейронных сетей в информационную систему. Рассмотрена практическая реализация предлагаемого метода на Python. Экспертная оценка адаптивности интерфейса тестовой информационной системы после внедрения разработанного метода показала его перспективность и эффективность. Разработанный метод показывает лучшую точность и низкую сложность программной реализации относительно классического алгоритмического подхода. Полученные результаты могут использоваться для автоматизации процесса выбора компонентов интерфейса различных информационных систем. Дальнейшие исследования заключаются в развитии и интеграции разработанного метода в рамках фреймворка адаптации информационных систем Here we consider the problem of choosing the optimal parameters of the interface in information systems with the aim of personalizing it for the preferences of the user and the capabilities of his equipment. Currently, algorithmic support and statistical processing of user preferences are used to solve it, which does not provide sufficient flexibility and accuracy. Therefore, in this work, we propose the application of the developed method for adapting interface parameters based on the analysis and processing of user information using neural networks. The scientific novelty of the method is to automate the collection, analysis of data and interface settings through the use and integration of neural networks in the information system. We consider the practical implementation of the proposed method in Python. An expert assessment of the adaptability of the interface of the test information system after the implementation of the developed method showed its availability and efficiency. The developed method shows the best accuracy and low complexity of software implementation relative to the classical algorithmic approach. The results obtained can be used to automate the selection of interface components for various information systems. Further research consists in the development and integration of the developed method within the framework of the information systems adaptation framework


1989 ◽  
Vol 21 (8-9) ◽  
pp. 1057-1064 ◽  
Author(s):  
Vijay Joshi ◽  
Prasad Modak

Waste load allocation for rivers has been a topic of growing interest. Dynamic programming based algorithms are particularly attractive in this context and are widely reported in the literature. Codes developed for dynamic programming are however complex, require substantial computer resources and importantly do not allow interactions of the user. Further, there is always resistance to utilizing mathematical programming based algorithms for practical applications. There has been therefore always a gap between theory and practice in systems analysis in water quality management. This paper presents various heuristic algorithms to bridge this gap with supporting comparisons with dynamic programming based algorithms. These heuristics make a good use of the insight gained in the system's behaviour through experience, a process akin to the one adopted by field personnel and therefore can readily be understood by a user familiar with the system. Also they allow user preferences in decision making via on-line interaction. Experience has shown that these heuristics are indeed well founded and compare very favourably with the sophisticated dynamic programming algorithms. Two examples have been included which demonstrate such a success of the heuristic algorithms.


2020 ◽  
Author(s):  
Abdulrahman Takiddin ◽  
Jens Schneider ◽  
Yin Yang ◽  
Alaa Abd-Alrazaq ◽  
Mowafa Househ

BACKGROUND Skin cancer is the most common cancer type affecting humans. Traditional skin cancer diagnosis methods are costly, require a professional physician, and take time. Hence, to aid in diagnosing skin cancer, Artificial Intelligence (AI) tools are being used, including shallow and deep machine learning-based techniques that are trained to detect and classify skin cancer using computer algorithms and deep neural networks. OBJECTIVE The aim of this study is to identify and group the different types of AI-based technologies used to detect and classify skin cancer. The study also examines the reliability of the selected papers by studying the correlation between the dataset size and number of diagnostic classes with the performance metrics used to evaluate the models. METHODS We conducted a systematic search for articles using IEEE Xplore, ACM DL, and Ovid MEDLINE databases following the PRISMA Extension for Scoping Reviews (PRISMA-ScR) guidelines. The study included in this scoping review had to fulfill several selection criteria; to be specifically about skin cancer, detecting or classifying skin cancer, and using AI technologies. Study selection and data extraction were conducted by two reviewers independently. Extracted data were synthesized narratively, where studies were grouped based on the diagnostic AI techniques and their evaluation metrics. RESULTS We retrieved 906 papers from the 3 databases, but 53 studies were eligible for this review. While shallow techniques were used in 14 studies, deep techniques were utilized in 39 studies. The studies used accuracy (n=43/53), the area under receiver operating characteristic curve (n=5/53), sensitivity (n=3/53), and F1-score (n=2/53) to assess the proposed models. Studies that use smaller datasets and fewer diagnostic classes tend to have higher reported accuracy scores. CONCLUSIONS The adaptation of AI in the medical field facilitates the diagnosis process of skin cancer. However, the reliability of most AI tools is questionable since small datasets or low numbers of diagnostic classes are used. In addition, a direct comparison between methods is hindered by a varied use of different evaluation metrics and image types.


Sign in / Sign up

Export Citation Format

Share Document