A New Method to Filter Out Radio-Frequency Interference (RFI) from SMOS Level 1C Data for Sea Ice Applications

Author(s):  
Marcus Huntemann ◽  
Georg Heygster
2019 ◽  
Vol 11 (24) ◽  
pp. 2917 ◽  
Author(s):  
Wangbin Shen ◽  
Zhengkun Qin ◽  
Zhaohui Lin

Observations from spaceborne microwave imagers are important sources of land surface information. However, the low-frequency channels of microwave imagers are easily interfered with by active radio signals with similar frequencies. Radio frequency interference (RFI) signals are widely distributed because of the lack of frequency protection, which seriously hinders the application of microwave imager data in data assimilation and retrieval research. In this paper, a new data restoration method is proposed based on principal component analysis (PCA). Both the ideal and real reconstruction experiments show that the new method can effectively repair abnormal observations interfered by RFI compared with the commonly used Cressman interpolation method because observation information over the whole selected domain is used for restoration in the new method, whereas Cressman interpolation uses only a selection of data around the target observation. The observation errors in the data with RFI can be reduced by one order of magnitude by means of the new method and little artificial information is introduced. One-week restoration validation also proves that the new method has a stable accuracy and broad application prospects.


Author(s):  
Rumadi Rumadi ◽  
◽  
Dicka Ariptian Rahayu ◽  
Nur Salma Yusuf Hasanah ◽  
Zhauhar Rainaldy Ardhana ◽  
...  

2020 ◽  
Vol 10 (19) ◽  
pp. 6885
Author(s):  
Sahar Ujan ◽  
Neda Navidi ◽  
Rene Jr Landry

Radio Frequency Interference (RFI) detection and characterization play a critical role in ensuring the security of all wireless communication networks. Advances in Machine Learning (ML) have led to the deployment of many robust techniques dealing with various types of RFI. To sidestep an unavoidable complicated feature extraction step in ML, we propose an efficient Deep Learning (DL)-based methodology using transfer learning to determine both the type of received signals and their modulation type. To this end, the scalogram of the received signals is used as the input of the pretrained convolutional neural networks (CNN), followed by a fully-connected classifier. This study considers a digital video stream as the signal of interest (SoI), transmitted in a real-time satellite-to-ground communication using DVB-S2 standards. To create the RFI dataset, the SoI is combined with three well-known jammers namely, continuous-wave interference (CWI), multi- continuous-wave interference (MCWI), and chirp interference (CI). This study investigated four well-known pretrained CNN architectures, namely, AlexNet, VGG-16, GoogleNet, and ResNet-18, for the feature extraction to recognize the visual RFI patterns directly from pixel images with minimal preprocessing. Moreover, the robustness of the proposed classifiers is evaluated by the data generated at different signal to noise ratios (SNR).


2019 ◽  
Vol 11 (7) ◽  
pp. 866 ◽  
Author(s):  
Imke Hans ◽  
Martin Burgdorf ◽  
Stefan A. Buehler

Understanding the causes of inter-satellite biases in climate data records from observations of the Earth is crucial for constructing a consistent time series of the essential climate variables. In this article, we analyse the strong scan- and time-dependent biases observed for the microwave humidity sounders on board the NOAA-16 and NOAA-19 satellites. We find compelling evidence that radio frequency interference (RFI) is the cause of the biases. We also devise a correction scheme for the raw count signals for the instruments to mitigate the effect of RFI. Our results show that the RFI-corrected, recalibrated data exhibit distinctly reduced biases and provide consistent time series.


Sign in / Sign up

Export Citation Format

Share Document