data restoration
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 20)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Li ◽  
Jiashu Wu ◽  
Junbiao Dai ◽  
Qingshan Jiang ◽  
Qiang Qu ◽  
...  

AbstractCurrent research on DNA storage usually focuses on the improvement of storage density by developing effective encoding and decoding schemes while lacking the consideration on the uncertainty in ultra-long-term data storage and retention. Consequently, the current DNA storage systems are often not self-contained, implying that they have to resort to external tools for the restoration of the stored DNA data. This may result in high risks in data loss since the required tools might not be available due to the high uncertainty in far future. To address this issue, we propose in this paper a self-contained DNA storage system that can bring self-explanatory to its stored data without relying on any external tool. To this end, we design a specific DNA file format whereby a separate storage scheme is developed to reduce the data redundancy while an effective indexing is designed for random read operations to the stored data file. We verified through experimental data that the proposed self-contained and self-explanatory method can not only get rid of the reliance on external tools for data restoration but also minimise the data redundancy brought about when the amount of data to be stored reaches a certain scale.


2021 ◽  
Vol 15 ◽  
Author(s):  
Liyong Luo ◽  
Yuanxu Xu ◽  
Junxia Pan ◽  
Meng Wang ◽  
Jiangheng Guan ◽  
...  

Two-photon Ca2+ imaging is a leading technique for recording neuronal activities in vivo with cellular or subcellular resolution. However, during experiments, the images often suffer from corruption due to complex noises. Therefore, the analysis of Ca2+ imaging data requires preprocessing steps, such as denoising, to extract biologically relevant information. We present an approach that facilitates imaging data restoration through image denoising performed by a neural network combining spatiotemporal filtering and model blind learning. Tests with synthetic and real two-photon Ca2+ imaging datasets demonstrate that the proposed approach enables efficient restoration of imaging data. In addition, we demonstrate that the proposed approach outperforms the current state-of-the-art methods by evaluating the qualities of the denoising performance of the models quantitatively. Therefore, our method provides an invaluable tool for denoising two-photon Ca2+ imaging data by model blind spatiotemporal processing.


2021 ◽  
Author(s):  
Min Li ◽  
Junbiao Dai ◽  
Qingshan Jiang ◽  
Yang Wang

Abstract Current research on DNA storage usually focuses on the improvement of storage density with reduced gene synthesis cost by developing effective encoding and decoding schemes while lacking the consideration on the uncertainty in ultra long-term data storage and retention. Consequently, the current DNA storage systems are often not self-containment, implying that they have to resort to external tools for the restoration of the stored gene data. This may result in high risks in data loss since the required tools might not be available due to the high uncertainty in far future. To address this issue, we propose in this paper a self-contained DNA storage system that can make self-explanatory to its stored data without relying on any external tools. To this end, we design a specific DNA file format whereby a separate storage scheme is developed to reduce the data redundancy while an effective indexing is designed for random read operations to the stored data file. We verified through experimental data that the proposed self-contained and self-explanatory method can not only get rid of the reliance on external tools for data restoration but also minimize the data redundancy brought about when the amount of data to be stored reaches a certain scale.


2020 ◽  
Vol 19 (04) ◽  
pp. 987-1013
Author(s):  
B. Balashunmugaraja ◽  
T. R. Ganeshbabu

Cloud security in finance is considered as the key importance, taking account of the aspect of critical data stored over cloud spaces within organizations all around the globe. They are chiefly relying on cloud computing to accelerate their business profitability and scale up their business processes with enhanced productivity coming through flexible work environments offered in cloud-run working systems. Hence, there is a prerequisite to contemplate cloud security in the entire financial service sector. Moreover, the main issue challenged by privacy and security is the presence of diverse chances to attack the sensitive data by cloud operators, which leads to double the user’s anxiety on the stored data. For solving this problem, the main intent of this paper is to develop an intelligent privacy preservation approach for data stored in the cloud sector, mainly the financial data. The proposed privacy preservation model involves two main phases: (a) data sanitization and (b) data restoration. In the sanitization process, the sensitive data is hidden, which prevents sensitive information from leaking on the cloud side. Further, the normal as well as the sensitive data is stored in a cloud environment. For the sanitization process, a key should be generated that depends on the new meta-heuristic algorithm called crossover improved-lion algorithm (CI-LA), which is inspired by the lion’s unique social behavior. During data restoration, the same key should be used for effectively restoring the original data. Here, the optimal key generation is done in such a way that the objective model involves the degree of modification, hiding rate, and information preservation rate, which effectively enhance the cyber security performance in the cloud.


Author(s):  
Geeta S. Navale ◽  
Suresh N. Mali

Nowadays, Data Sanitization is considered as a highly demanded area for solving the issue of privacy preservation in Data mining. Data Sanitization, means that the sensitive rules given by the users with the specific modifications and then releases the modified database so that, the unauthorized users cannot access the sensitive rules. Promisingly, the confidentiality of data is ensured against the data mining methods. The ultimate goal of this paper is to build an effective sanitization algorithm for hiding the sensitive rules given by users/experts. Meanwhile, this paper concentrates on minimizing the four sanitization research challenges namely, rate of hiding failure, rate of Information loss, rate of false rule generation and degree of modification. Moreover, this paper proposes a heuristic optimization algorithm named Self-Adaptive Firefly (SAFF) algorithm to generate the small length key for data sanitization and also to adopt lossless data sanitization and restoration. The generated optimized key is used for both data sanitation as well as the data restoration process. The proposed SAFF-based algorithm is compared and examined against the other existing sanitizing algorithms like Fire Fly (FF), Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution algorithm (DE) algorithms and the results have shown the excellent performance of proposed algorithm. The proposed algorithm is implemented in JAVA. The data set used are Chess, Retail, T10, and T40.


2020 ◽  
Vol 237 ◽  
pp. 111602 ◽  
Author(s):  
Guoshuai Dong ◽  
Weimin Huang ◽  
William A.P. Smith ◽  
Peng Ren
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document