Robotic-Arm Assisted Partial Knee Arthroplasty (MAKO)

Author(s):  
Frederick Buechel ◽  
Frederick Buechel ◽  
Michael Conditt
2020 ◽  
Vol 102-B (1) ◽  
pp. 108-116 ◽  
Author(s):  
Joost A. Burger ◽  
Laura J. Kleeblad ◽  
Niels Laas ◽  
Andrew D. Pearle

Aims Limited evidence is available on mid-term outcomes of robotic-arm assisted (RA) partial knee arthroplasty (PKA). Therefore, the purpose of this study was to evaluate mid-term survivorship, modes of failure, and patient-reported outcomes of RA PKA. Methods A retrospective review of patients who underwent RA PKA between June 2007 and August 2016 was performed. Patients received a fixed-bearing medial or lateral unicompartmental knee arthroplasty (UKA), patellofemoral arthroplasty (PFA), or bicompartmental knee arthroplasty (BiKA; PFA plus medial UKA). All patients completed a questionnaire regarding revision surgery, reoperations, and level of satisfaction. Knee Injury and Osteoarthritis Outcome Scores (KOOS) were assessed using the KOOS for Joint Replacement Junior survey. Results Mean follow-up was 4.7 years (2.0 to 10.8). Five-year survivorship of medial UKA (n = 802), lateral UKA (n = 171), and PFA/BiKA (n = 35/10) was 97.8%, 97.7%, and 93.3%, respectively. Component loosening and progression of osteoarthritis (OA) were the most common reasons for revision. Mean KOOS scores after medial UKA, lateral UKA, and PFA/BiKA were 84.3 (SD 15.9), 85.6 (SD 14.3), and 78.2 (SD 14.2), respectively. The vast majority of the patients reported high satisfaction levels after RA PKA. Subgroup analyses suggested tibial component design, body mass index (BMI), and age affects RA PKA outcomes. Five-year survivorship was 98.4% (95% confidence interval (CI) 97.2 to 99.5) for onlay medial UKA (n = 742) and 99.1% (95% CI 97.9 to 100) for onlay medial UKA in patients with a BMI < 30 kg/m2 (n = 479). Conclusion This large single-surgeon study showed high mid-term survivorship, satisfaction levels, and functional outcomes in RA UKA using metal-backed tibial onlay components. In addition, favourable results were reported in RA PFA and BiKA. Cite this article: Bone Joint J 2020;102-B(1):108–116


Author(s):  
Junren Zhang ◽  
Wofhatwa Solomon Ndou ◽  
Nathan Ng ◽  
Paul Gaston ◽  
Philip M. Simpson ◽  
...  

A correction to this paper has been published: https://doi.org/10.1007/s00167-021-06522-x


Author(s):  
William A. Jiranek ◽  
Daniel L. Riddle

2020 ◽  
Vol 102-B (11) ◽  
pp. 1511-1518
Author(s):  
Matthew S. Banger ◽  
William D. Johnston ◽  
Nima Razii ◽  
James Doonan ◽  
Philip J. Rowe ◽  
...  

Aims The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. Methods An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups. Results The pre- to postoperative changes in joint anatomy were significantly less in patients undergoing bi-UKA in all three planes in both the femur and tibia, except for femoral sagittal component orientation in which there was no difference. Overall, for the six parameters of alignment (three femoral and three tibial), 47% of bi-UKAs and 24% TKAs had a change of < 2° (p = 0.045). The change in HKAA towards neutral in varus and valgus knees was significantly less in patients undergoing bi-UKA compared with those undergoing TKA (p < 0.001). Alignment was neutral in those undergoing TKA (mean 179.5° (SD 3.2°)) while those undergoing bi-UKA had mild residual varus or valgus alignment (mean 177.8° (SD 3.4°)) (p < 0.001). Conclusion Robotic-assisted, cruciate-sparing bi-UKA maintains the natural anatomy of the knee in the coronal, sagittal, and axial planes better, and may therefore preserve normal joint kinematics, compared with a mechanically aligned TKA. This includes preservation of coronal joint line obliquity. HKAA alignment was corrected towards neutral significantly less in patients undergoing bi-UKA, which may represent restoration of the pre-disease constitutional alignment (p < 0.001). Cite this article: Bone Joint J 2020;102-B(11):1511–1518.


2018 ◽  
pp. 111-121
Author(s):  
Giles R. Scuderi ◽  
Lisa Renner ◽  
Clemens Gwinner ◽  
Philipp von Roth ◽  
Carsten Perka

2019 ◽  
Vol 101-B (4) ◽  
pp. 435-442 ◽  
Author(s):  
F. Zambianchi ◽  
G. Franceschi ◽  
E. Rivi ◽  
F. Banchelli ◽  
A. Marcovigi ◽  
...  

Aims The purpose of this multicentre observational study was to investigate the association between intraoperative component positioning and soft-tissue balancing on short-term clinical outcomes in patients undergoing robotic-arm assisted unicompartmental knee arthroplasty (UKA). Patients and Methods Between 2013 and 2016, 363 patients (395 knees) underwent robotic-arm assisted UKAs at two centres. Pre- and postoperatively, patients were administered Knee Injury and Osteoarthritis Score (KOOS) and Forgotten Joint Score-12 (FJS-12). Results were stratified as “good” and “bad” if KOOS/FJS-12 were more than or equal to 80. Intraoperative, post-implantation robotic data relative to CT-based components placement were collected and classified. Postoperative complications were recorded. Results Following exclusions and losses to follow-up, 334 medial robotic-arm assisted UKAs were assessed at a mean follow-up of 30.0 months (8.0 to 54.9). None of the measured parameters were associated with overall KOOS outcome. Correlations were described between specific KOOS subscales and intraoperative, post-implantation robotic data, and between FJS-12 and femoral component sagittal alignment. Three UKAs were revised, resulting in 99.0% survival at two years (95% confidence interval (CI) 97.9 to 100.0). Conclusion Although little correlation was found between intraoperative robotic data and overall clinical outcome, surgeons should consider information regarding 3D component placement and soft-tissue balancing to improve patient satisfaction. Reproducible and precise placement of components has been confirmed as essential for satisfactory clinical outcome. Cite this article: Bone Joint J 2019;101-B:435–442.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Sharma Cook-Richardson ◽  
Rasesh Desai

In this case, we will describe a 68-year-old man with combined femoral and tibial bone deformities who underwent robotic arm-assisted total knee arthroplasty (RATKA) to treat his severe osteoarthritis in the setting of extra-articular deformities that altered the native anatomical axis and the kinematics of the deformed extra-articular bony structures which chronically generated a neomechanical axis. The combination of severe osteoarthritis with extra-articular deformities made the RATKA method the best surgical treatment option taking into account altered kinematics of the native joint which conventional jig-based total knee arthroplasty would not have prioritized during bony cuts and implant positioning. The patient underwent successful knee arthroplasty with robotic arm-assisted technology with restoration of the mechanical axis.


Author(s):  
Connor A. King ◽  
Mark Jordan ◽  
Alexander T. Bradley ◽  
Caroline Wlodarski ◽  
Alexander Tauchen ◽  
...  

Abstract Background This study sought to evaluate the patient experience and short-term clinical outcomes associated with the hospital stay of patients who underwent robotic arm-assisted total knee arthroplasty (TKA). These results were compared with a cohort of patients who underwent TKA without robotic assistance performed by the same surgeon prior to the introduction of this technology. Materials and Methods A cohort of consecutive patients undergoing primary TKA for the diagnosis of osteoarthritis by a single fellowship trained orthopaedic surgeon over a 39-month period was identified. Patients who underwent TKA during the year that this surgeon transitioned his entire knee arthroplasty practice to robotic assistance were excluded to eliminate selection bias and control for the learning curve. All patients received the same prosthesis and postoperative pain protocol. Patients that required intubation for failed spinal anesthetic were excluded. A final population of 492 TKAs was identified. Of these, 290 underwent TKA without robotic assistance and 202 underwent robotic arm-assisted TKA. Patient demographic characteristics and short-term clinical data were analyzed. Results Robotic arm-assisted TKA was associated with shorter length of stay (2.3 vs. 2.6 days, p < 0.001), a 50% reduction in morphine milligram equivalent utilization (from 214 to 103, p < 0.001), and a mean increase in procedure time of 9.3 minutes (p < 0.001). There was one superficial infection in the nonrobotic cohort and there were no deep postoperative infections in either cohort. There were no manipulations under anesthesia in the robotic cohort while there were six in the nonrobotic cohort. Additionally, there were no significant differences in emergency department visits, readmissions, or return to the operating room. Conclusion This analysis corroborates existing literature suggesting that robotic arm-assisted TKA can be correlated with improved short-term clinical outcomes. This study reports on a single surgeon's experience with regard to analgesic requirements, length of stay, pain scores, and procedure time following a complete transition to robotic arm-assisted TKA. These results underscore the importance of continued evaluation of clinical outcomes as robotic arthroplasty technology continues to grow.


Sign in / Sign up

Export Citation Format

Share Document