scholarly journals Robotic Arm-Assisted Total Knee Arthroplasty in the Setting of Combined Extra-articular Deformities of the Femur and Tibia

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Sharma Cook-Richardson ◽  
Rasesh Desai

In this case, we will describe a 68-year-old man with combined femoral and tibial bone deformities who underwent robotic arm-assisted total knee arthroplasty (RATKA) to treat his severe osteoarthritis in the setting of extra-articular deformities that altered the native anatomical axis and the kinematics of the deformed extra-articular bony structures which chronically generated a neomechanical axis. The combination of severe osteoarthritis with extra-articular deformities made the RATKA method the best surgical treatment option taking into account altered kinematics of the native joint which conventional jig-based total knee arthroplasty would not have prioritized during bony cuts and implant positioning. The patient underwent successful knee arthroplasty with robotic arm-assisted technology with restoration of the mechanical axis.

2018 ◽  
Vol 32 (03) ◽  
pp. 239-250 ◽  
Author(s):  
Emily Hampp ◽  
Morad Chughtai ◽  
Laura Scholl ◽  
Nipun Sodhi ◽  
Manoshi Bhowmik-Stoker ◽  
...  

AbstractThis study determined if robotic-arm assisted total knee arthroplasty (RATKA) allows for more accurate and precise bone cuts and component position to plan compared with manual total knee arthroplasty (MTKA). Specifically, we assessed the following: (1) final bone cuts, (2) final component position, and (3) a potential learning curve for RATKA. On six cadaver specimens (12 knees), a MTKA and RATKA were performed on the left and right knees, respectively. Bone-cut and final-component positioning errors relative to preoperative plans were compared. Median errors and standard deviations (SDs) in the sagittal, coronal, and axial planes were compared. Median values of the absolute deviation from plan defined the accuracy to plan. SDs described the precision to plan. RATKA bone cuts were as or more accurate to plan based on nominal median values in 11 out of 12 measurements. RATKA bone cuts were more precise to plan in 8 out of 12 measurements (p ≤ 0.05). RATKA final component positions were as or more accurate to plan based on median values in five out of five measurements. RATKA final component positions were more precise to plan in four out of five measurements (p ≤ 0.05). Stacked error results from all cuts and implant positions for each specimen in procedural order showed that RATKA error was less than MTKA error. Although this study analyzed a small number of cadaver specimens, there were clear differences that separated these two groups. When compared with MTKA, RATKA demonstrated more accurate and precise bone cuts and implant positioning to plan.


Author(s):  
LiMing Liu ◽  
Kai Lei ◽  
Xin Chen ◽  
HuaQuan Fan ◽  
Liu Yang ◽  
...  

AbstractRadiographs are widely used to measure distal femoral valgus cut angle (VCA) in total knee arthroplasty (TKA), but its accuracy is controversial. This study used three-dimensional (3D) reconstruction models to verify the accuracy of VCA measurements on radiographs, and explore the correlation of VCA with hip–knee–ankle (HKA) angle and lateral femoral bowing angle (FBA). A total of 444 osteoarthritis knees of 444 patients from August 2016 to June 2018 was included retrospectively. On radiographs, two-dimensional VCA (VCA-2D) was measured between the femoral mechanical axis and the distal femoral anatomical axis, and HKA was measured between the femoral mechanical axis and the tibial mechanical axis. On the coronal projection of computed tomography 3D models, the anatomical landmarks used for VCA-3D measurements were the same as those on the radiographs, FBA was measured between the proximal and distal femoral anatomical axis. The distributions of VCA-2D and VCA-3D were evaluated by means and variances. The correlation between HKA and VCA and between FBA and VCA was explored. There was a statistical difference between VCA-2D and VCA-3D (p < 0.001), but the deviation was very small (0.15 ± 0.69 degrees), 83.3% of the deviations were less than 1 degree. VCA would increase both in 2D and 3D with increasing of FBA and HKA varus. There was no statistically significant difference between VCA-2D and VCA-3D in patients with moderate varus knees (0–8 degrees of varus) and mild bowing femurs (FBA <5 degrees). Overall, the deviation caused by using radiography to measure VCA was negligible. VCA measurements using radiographs were accurate in patients with moderate varus knees and mildly bowed femurs. This study reflects level of evidence III.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xufeng Wan ◽  
Qiang Su ◽  
Duan Wang ◽  
Mingcheng Yuan ◽  
Yahao Lai ◽  
...  

Abstract Background The reliability of robotic arm-assisted total knee arthroplasty (RA-TKA) has been previously reported. In this study, we evaluated the predictive accuracy of the RA-TKA system in determining the required bone resection and implant size preoperatively and its effect on intraoperative decision-making. Methods Data on the outcomes of RA-TKA procedures performed in our department were prospectively collected. A three-dimensional model of the femur, tibia, and fibula was reconstructed using standard computed tomography (CT) images. The model was used preoperatively to predict bone required resection for the femur and tibia and implant size. Intraoperatively, the images were registered to the local anatomy to create a patient-specific model for decision-making, including real-time measurement of the medial-to-lateral difference in the extension/flexion gap and TKA component alignment. Differences between predicted and real bone resections and implant size were evaluated, and the post-TKA mechanical axis of the lower limb and difference in medial-to-lateral flexion/extension gap were measured. Results The analysis was based on the data of 28 patients who underwent TKA to treat severe osteoarthritis. The RA-TKA system successfully predicted the femoral and tibial component within one implant size in 28/28 cases (100%). For the 168 bone resections performed, including both femoral and tibial cuts, the resection was within 1 mm of the predicted value in 120/168 (71%) of the cuts. The actual versus predicted bone resection was statistically different only for the lateral tibial plateau (p = 0.018). The medial-to-lateral gap difference was between − 1 and 1 mm, except in one case. The achieved lower limb alignment was accurate overall, with the alignment being within < 1.0° of the neutral mechanical axis in 13/28 cases (46%) and within < 3.0° in 28/28 cases (100%). Conclusions The RA-TKA system provided considerable pre- and intraoperative surgical assistance to achieve accurate bone resection, appropriate component sizing, and postoperative alignment after RA-TKA.


Author(s):  
Junren Zhang ◽  
Wofhatwa Solomon Ndou ◽  
Nathan Ng ◽  
Paul Gaston ◽  
Philip M. Simpson ◽  
...  

A correction to this paper has been published: https://doi.org/10.1007/s00167-021-06522-x


Author(s):  
Matthias Meyer ◽  
Tobias Renkawitz ◽  
Florian Völlner ◽  
Achim Benditz ◽  
Joachim Grifka ◽  
...  

Abstract Introduction Because of the ongoing discussion of imageless navigation in total knee arthroplasty (TKA), its advantages and disadvantages were evaluated in a large patient cohort. Methods This retrospective analysis included 2464 patients who had undergone TKA at a high-volume university arthroplasty center between 2012 and 2017. Navigated and conventional TKA were compared regarding postoperative mechanical axis, surgery duration, complication rates, one-year postoperative patient-reported outcome measures (PROMs) (WOMAC and EQ-5D indices), and responder rates as defined by the criteria of the Outcome Measures in Rheumatology and Osteoarthritis Research Society International consensus (OMERACT-OARSI). Results Both navigated (1.8 ± 1.6°) and conventional TKA (2.1 ± 1.6°, p = 0.002) enabled the exact reconstruction of mechanical axis. Surgery duration was six minutes longer for navigated TKA than for conventional TKA (p < 0.001). Complication rates were low in both groups with comparable frequencies: neurological deficits (p = 0.39), joint infection (p = 0.42 and thromboembolic events (p = 0.03). Periprosthetic fractures occurred more frequently during conventional TKA (p = 0.001). One-year PROMs showed excellent improvement in both groups. The WOMAC index was statistically higher for navigated TKA than for conventional TKA (74.7 ± 19.0 vs. 71.7 ± 20.7, p = 0.014), but the increase was not clinically relevant. Both groups had a similarly high EQ-5D index (0.23 ± 0.24 vs. 0.26 ± 0.25, p = 0.11) and responder rate (86.5% [256/296] vs. 85.9% [981/1142], p = 0.92). Conclusion Both methods enable accurate postoperative leg alignment with low complication rates and equally successful PROMs and responder rates one year postoperatively. Level of evidence III. Retrospective cohort study.


2021 ◽  
Vol 29 (1) ◽  
pp. 230949902110020
Author(s):  
Seikai Toyooka ◽  
Hironari Masuda ◽  
Nobuhiro Nishihara ◽  
Takashi Kobayashi ◽  
Wataru Miyamoto ◽  
...  

Purpose: To evaluate the integrity of lateral soft tissue in varus osteoarthritis knee by comparing the mechanical axis under varus stress during navigation-assisted total knee arthroplasty before and after compensating for a bone defect with the implant. Methods: Sixty-six knees that underwent total knee arthroplasty were investigated. The mechanical axis of the operated knee was evaluated under manual varus stress immediately after knee exposure and after navigation-assisted implantation. The correlation between each value of the mechanical axis and degree of preoperative varus deformity was compared by regression analysis. Results: The maximum mechanical axis under varus stress immediately after knee exposure increased in proportion to the degree of preoperative varus deformity. Moreover, the maximum mechanical axis under varus stress after implantation increased in proportion to the degree of preoperative varus deformity. Therefore, the severity of varus knee deformity leads to a progressive laxity of the lateral soft tissue. However, regression coefficients after implantation were much smaller than those measured immediately after knee exposure (0.99 vs 0.20). Based on the results of the regression formula, the postoperative laxity of the lateral soft tissue was negligible, provided that an appropriate thickness of the implant was compensated for the bone and cartilage defect in the medial compartment without changing the joint line. Conclusion: The severity of varus knee deformity leads to a progressive laxity of the lateral soft tissue. However, even if the degree of preoperative varus deformity is severe, most cases may not require additional procedures to address the residual lateral laxity.


Joints ◽  
2019 ◽  
Vol 07 (01) ◽  
pp. 013-018
Author(s):  
Davide E. Bonasia ◽  
Anna Palazzolo ◽  
Umberto Cottino ◽  
Francesco Saccia ◽  
Claudio Mazzola ◽  
...  

AbstractTotal knee arthroplasty (TKA) is a valuable treatment option for advanced osteoarthritis in patients unresponsive to conservative treatments. Despite overall satisfactory results, the rate of unsatisfied patients after TKA remains high, ranging from 5 to 40%. Different modifiable and nonmodifiable prognostic factors associated with TKA outcomes have been described. The correction, whenever possible, of modifiable factors is fundamental in preoperative patients' optimization protocols. Nonmodifiable factors can help in predicting the outcomes and creating the right expectations in the patients undergoing TKA. The goal of this review is to summarize the modifiable and nonmodifiable prognostic factors associated with TKA outcomes.


Sign in / Sign up

Export Citation Format

Share Document