Integrated Reconfiguration of Multi-Satellite Network Communication Using Colored Petri Nets

Author(s):  
Atefeh Einafshar ◽  
Behnam Razavi ◽  
Farrokh Sassani
2014 ◽  
Vol 35 (11) ◽  
pp. 2608-2614
Author(s):  
Xiang Gao ◽  
Yue-fei Zhu ◽  
Sheng-li Liu

2021 ◽  
Vol 13 (7) ◽  
pp. 1262
Author(s):  
Leyi Shi ◽  
Shanshan Du ◽  
Yifan Miao ◽  
Songbai Lan

With the development of satellite communication networks and the increase of satellite services, security problems have gradually become some of the most concerning issues. Researchers have made great efforts, including conventional safety methods such as secure transmission, anti-jamming, secure access, and especially the new generation of active defense technology represented by MTD. However, few scholars have theoretically studied the influence of active defense technique on the performance of satellite networks. Formal modeling and performance analysis have not been given sufficient attention. In this paper, we focus on the performance evaluation of satellite network moving target defense system. Firstly, two Stochastic Petri Nets (SPN) models are constructed to analyze the performance of satellite network in traditional and active defense states, respectively. Secondly, the steady-state probability of each marking in SPN models is obtained by using the isomorphism relation between SPN and Markov Chains (MC), and further key performance indicators such as average time delay, throughput, and the utilization of bandwidth are reasoned theoretically. Finally, the proposed two SPN models are simulated based on the PIPE platform. In addition, the effect of parameters on the selected performance indexes is analyzed by varying the values of different parameters. The simulation results prove the correctness of the theoretical reasoning and draw the key factors affecting the performance of satellite network, which can provide an important theoretical basis for the design and performance optimization of the satellite network moving target defense system.


Author(s):  
Goharik Petrosyan ◽  
Armen Gaboutchian ◽  
Vladimir Knyaz

Petri nets are a mathematical apparatus for modelling dynamic discrete systems. Their feature is the ability to display parallelism, asynchrony and hierarchy. First was described by Karl Petri in 1962 [1,2,8]. The Petri net is a bipartite oriented graph consisting of two types of vertices - positions and transitions connected by arcs between each other; vertices of the same type cannot be directly connected. Positions can be placed by tags (markers) that can move around the network. [2] Petri Nets (PN) used for modelling real systems is sometimes referred to as Condition/Events nets. Places identify the conditions of the parts of the system (working, idling, queuing, and failing), and transitions describe the passage from one state to another (end of a task, failure, repair...). An event occurs (a transition fire) when all the conditions are satisfied (input places are marked) and give concession to the event. The occurrence of the event entirely or partially modifies the status of the conditions (marking). The number of tokens in a place can be used to identify the number of resources lying in the condition denoted by that place [1,2,8]. Coloured Petri nets (CPN) is a graphical oriented language for design, specification, simulation and verification of systems [3-6,9,15]. It is in particular well-suited for systems that consist of several processes which communicate and synchronize. Typical examples of application areas are communication protocols, distributed systems, automated production systems, workflow analysis and VLSI chips. In the Classical Petri Net, tokens do not differ; we can say that they are colourless. Unlike standard Petri nets in Colored Petri Net of a position can contain tokens of arbitrary complexity, such as lists, etc., that enables modelling to be more reliable. The article is devoted to the study of the possibilities of modelling Colored Petri nets. The article discusses the interrelation of languages of the Colored Petri nets and traditional formal languages. The Venn diagram, which the author has modified, shows the relationship between the languages of the Colored Petri nets and some traditional languages. The language class of the Colored Petri nets includes a whole class of Context-free languages and some other classes. The paper shows modelling the task synchronization Patil using Colored Petri net, which can't be modeled using well- known operations P and V or by classical Petri network, since the operations P and V and classical Petri networks have limited mathematical properties which do not allow to model the mechanisms in which the process should be synchronized with the optimal allocation of resources.


2012 ◽  
Vol 2 (7) ◽  
pp. 2417-2424 ◽  
Author(s):  
Mohammad Sadegh Alishahi ◽  
Ali Harounabadi ◽  
Seyed Javad Mirabedini

Sign in / Sign up

Export Citation Format

Share Document