scholarly journals Private Computation on Encrypted Genomic Data

Author(s):  
Kristin Lauter ◽  
Adriana López-Alt ◽  
Michael Naehrig
2018 ◽  
Vol 2018 (4) ◽  
pp. 104-124 ◽  
Author(s):  
Gilad Asharov ◽  
Shai Halevi ◽  
Yehuda Lindell ◽  
Tal Rabin

Abstract The growing availability of genomic data holds great promise for advancing medicine and research, but unlocking its full potential requires adequate methods for protecting the privacy of individuals whose genome data we use. One example of this tension is running Similar Patient Query on remote genomic data: In this setting a doctor that holds the genome of his/her patient may try to find other individuals with “close” genomic data, and use the data of these individuals to help diagnose and find effective treatment for that patient’s conditions. This is clearly a desirable mode of operation. However, the privacy exposure implications are considerable, and so we would like to carry out the above “closeness” computation in a privacy preserving manner. In this work we put forward a new approach for highly efficient secure computation for computing an approximation of the Similar Patient Query problem. We present contributions on two fronts. First, an approximation method that is designed with the goal of achieving efficient private computation. Second, further optimizations of the two-party protocol. Our tests indicate that the approximation method works well, it returns the exact closest records in 98% of the queries and very good approximation otherwise. As for speed, our protocol implementation takes just a few seconds to run on databases with thousands of records, each of length thousands of alleles, and it scales almost linearly with both the database size and the length of the sequences in it. As an example, in the datasets of the recent iDASH competition, after a one-time preprocessing of around 12 seconds, it takes around a second to find the nearest five records to a query, in a size-500 dataset of length- 3500 sequences. This is 2-3 orders of magnitude faster than using state-of-the-art secure protocols with existing edit distance algorithms.


Author(s):  
Pawan Kumar Jayaswal ◽  
Asheesh Shanker ◽  
Nagendra Kumar Singh

Actin and tubulin are cytoskeleton proteins, which are important components of the celland are conserved across species. Despite their crucial significance in cell motility and cell division the distribution and phylogeny of actin and tubulin genes across taxa is poorly understood. Here we used publicly available genomic data of 49 model species of plants, animals, fungi and Protista for further understanding the distribution of these genes among diverse eukaryotic species using rice as reference. The highest numbers of rice actin and tubulin gene homologs were present in plants followed by animals, fungi and Protista species, whereas ten actin and nine tubulin genes were conserved in all 49 species. Phylogenetic analysis of 19 actin and 18 tubulin genes clustered them into four major groups each. One each of the actin and tubulin gene clusters was conserved across eukaryotic species. Species trees based on the conserved actin and tubulin genes showed evolutionary relationship of 49 different taxa clustered into plants, animals, fungi and Protista. This study provides a phylogenetic insight into the evolution of actin and tubulin genes in diverse eukaryotic species.


2020 ◽  
Vol 13 (10) ◽  
pp. 2821-2835
Author(s):  
Lei Chen ◽  
Jing‐Tao Sun ◽  
Peng‐Yu Jin ◽  
Ary A. Hoffmann ◽  
Xiao‐Li Bing ◽  
...  

2021 ◽  
Author(s):  
Allison P. Heath ◽  
Vincent Ferretti ◽  
Stuti Agrawal ◽  
Maksim An ◽  
James C. Angelakos ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Aurelie Labarre ◽  
David López-Escardó ◽  
Francisco Latorre ◽  
Guy Leonard ◽  
François Bucchini ◽  
...  

AbstractHeterotrophic lineages of stramenopiles exhibit enormous diversity in morphology, lifestyle, and habitat. Among them, the marine stramenopiles (MASTs) represent numerous independent lineages that are only known from environmental sequences retrieved from marine samples. The core energy metabolism characterizing these unicellular eukaryotes is poorly understood. Here, we used single-cell genomics to retrieve, annotate, and compare the genomes of 15 MAST species, obtained by coassembling sequences from 140 individual cells sampled from the marine surface plankton. Functional annotations from their gene repertoires are compatible with all of them being phagocytotic. The unique presence of rhodopsin genes in MAST species, together with their widespread expression in oceanic waters, supports the idea that MASTs may be capable of using sunlight to thrive in the photic ocean. Additional subsets of genes used in phagocytosis, such as proton pumps for vacuole acidification and peptidases for prey digestion, did not reveal particular trends in MAST genomes as compared with nonphagocytotic stramenopiles, except a larger presence and diversity of V-PPase genes. Our analysis reflects the complexity of phagocytosis machinery in microbial eukaryotes, which contrasts with the well-defined set of genes for photosynthesis. These new genomic data provide the essential framework to study ecophysiology of uncultured species and to gain better understanding of the function of rhodopsins and related carotenoids in stramenopiles.


Author(s):  
Nikki Leanne Phair ◽  
Erica Spotswood Nielsen ◽  
Sophie von der Heyden
Keyword(s):  

IEEE Micro ◽  
2021 ◽  
pp. 1-1
Author(s):  
Tae Jun Ham ◽  
David Bruns-Smith ◽  
Brendan Sweeney ◽  
Yejin Lee ◽  
Seong Hoon Seo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document