unicellular eukaryotes
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 60)

H-INDEX

30
(FIVE YEARS 6)

Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Agathe Martignier ◽  
Montserrat Filella ◽  
Jean-Michel Jaquet ◽  
Mathieu Coster ◽  
Daniel Ariztegui

In unicellular organisms, intracellular inclusions of amorphous calcium carbonate (ACC) were initially described in cyanobacteria and, later, in unicellular eukaryotes from Lake Geneva (Switzerland/France). Inclusions in unicellular eukaryotes, named micropearls, consist of hydrated ACCs, frequently enriched in Sr or Ba, and displaying internal oscillatory zonations, due to variations in the Ba:Ca or Sr:Ca ratios. An analysis of our database, consisting of 1597 micropearl analyses from Lake Geneva and 34 from Lake Titicaca (Bolivia/Peru), showed that a certain number of Sr- and Ba-enriched micropearls from these lakes contain As in amounts measurable by EDXS. A Q-mode statistical analysis confirmed the existence of five chemically distinct morpho-chemical groups of As-bearing micropearls, among which was a new category identified in Lake Geneva, where As is often associated with Mg. This new type of micropearl is possibly produced in a small (7–12 μm size) bi-flagellated organism. Micropearls from Lake Titicaca, which contain Sr, were found in an organism very similar to Tetraselmis cordiformis, which was observed earlier in Lake Geneva. Lake Titicaca micropearls contain larger As amounts, which can be explained by the high As concentration in the water of this lake. The ubiquity of this observed biomineralization process points to the need for a better understanding of the role of amorphous or crystalline calcium carbonates in As cycling in surface waters.


Author(s):  
Jennifer F. Pinello ◽  
Theodore G. Clark

Most, if not all the cellular requirements for fertilization and sexual reproduction arose early in evolution and are retained in extant lineages of single-celled organisms including a number of important model organism species. In recent years, work in two such species, the green alga, Chlamydomonas reinhardtii, and the free-living ciliate, Tetrahymena thermophila, have lent important new insights into the role of HAP2/GCS1 as a catalyst for gamete fusion in organisms ranging from protists to flowering plants and insects. Here we summarize the current state of knowledge around how mating types from these algal and ciliate systems recognize, adhere and fuse to one another, current gaps in our understanding of HAP2-mediated gamete fusion, and opportunities for applying what we know in practical terms, especially for the control of protozoan parasites.


2021 ◽  
Author(s):  
Christian Woehle ◽  
Sophie Roy ◽  
Nicolaas Glock ◽  
Jan Michels ◽  
Tanita Wein ◽  
...  

Benthic foraminifera are unicellular eukaryotes that inhabit sediments of aquatic environments. Several foraminifera of the order Rotaliida are known to store and use nitrate for denitrification, a unique energy metabolism among eukaryotes. The rotaliid Globobulimina spp. has been shown to encode an incomplete denitrification pathway of bacterial origins. However, the prevalence of denitrification genes in foraminifera remains unknown and the missing denitrification pathway components are elusive. Analysing transcriptomes and metagenomes of ten foraminifera species from the Peruvian oxygen minimum zone, we show that denitrification genes are highly conserved in foraminifera. We infer of the last common ancestor of denitrifying foraminifera, which enables us to predict further denitrifying species. Additionally, an examination of the foraminifera microbiota reveals evidence for a stable interaction with Desulfobacteracea, which harbour genes that complement the foraminifera denitrification pathway. Our results provide evidence that foraminiferal denitrification is complemented by the foraminifera microbiome. The interaction of Foraminifera with their resident bacteria is at the basis of foraminifera adaptation to anaerobic environments that manifested in ecological success within oxygen depleted habitats.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Gabriele Del Gaizo ◽  
Luca Russo ◽  
Maria Abagnale ◽  
Angela Buondonno ◽  
Marta Furia ◽  
...  

Plankton communities include both unicellular and multicellular organisms. An important unicellular component is represented by those protists (i.e., unicellular eukaryotes) that are non-strictly autotrophic organisms and consume bacteria and other protists. These organisms are an important link between primary producers and metazoans and are usually known as microzooplankton, protozooplankton, or mixoplankton, as many of them couple phagotrophic and photoautotrophic behaviours. Herein we report on the diversity of these organisms sampled at two sampling sites (coastal and offshore stations), at two depths (0 and 10 m), in the Gulf of Naples during the early autumn of 2020. Despite efforts to list plankton biodiversity of primary producers and metazoan grazers made in this area so far, protistan grazers are still poorly investigated and previous information date back to decades ago. Our survey identified dinoflagellates and oligotrich ciliates as the most abundant groups, while tintinnids were less quantitatively relevant. The taxonomic composition in samples investigated herein remarked that reported by previous studies, with the sole exception of the tintinnid Ascampbeliella armilla, which was never reported before. A coastal-offshore gradient in the taxonomical composition of protistan grazers was also observed, with some species more abundant within coastal waters and other better thriving in offshore ones. Surface and sub-surface communities also differed in terms of species composition, with the deeper communities in the two sites being more similar reciprocally than with communities at the surface. These differences were associated with distinct environmental conditions, such as light availability, as well with the standing feeding environment, arising potential implications in the functioning of the planktonic food web at the local scale.


Author(s):  
Agathe Martignier ◽  
Montserrat Filella ◽  
Jean-Michel Jaquet ◽  
Mathieu Coster ◽  
Daniel Ariztegui

In unicellular organisms, intracellular inclusions of amorphous calcium carbonate (ACC) have been initially described in cyanobacteria and, later, in unicellular eukaryotes of Lake Geneva (Switzerland/France). Inclusions in unicellular eukaryotes ‒named micropearls‒ consist of hydrated ACCs, frequently enriched in Sr or Ba, displaying internal oscillatory zonations due to variations in the Ba:Ca or Sr:Ca ratios. The analysis of our database consisting of 1597 micropearl analyses from Lake Geneva and 34 from Lake Titicaca (Bolivia/Peru) has shown that a certain number of Sr and Ba-enriched micropearls from these lakes contain As in amounts measurable by EDXS. A Q-mode statistical analysis has confirmed the existence of five geochemically distinct morpho-chemical groups of As-bearing micropearls, among which a new category identified in Lake Geneva, where As is often associated with Mg. This new type of micropearl is possibly produced in a small (7-12 m size) bi-flagellated organism. Micropearls from Lake Titicaca, which contain Sr, are found in an organism very similar to Tetraselmis cordiformis, observed in Lake Geneva. Lake Titicaca micropearls contain higher As concentrations which can be explained by the high As concentration in the water of this lake. The ubiquity of the biomineralization process observed points to the need for better understanding of the role of amorphous or crystalline calcium carbonates in As cycling in surface waters.


2021 ◽  
Author(s):  
Markus Majaneva ◽  
Janne-Markus Rintala ◽  
Jaanika Blomster

AbstractCiliophora is a phylum of unicellular eukaryotes that are common and have pivotal roles in aquatic environments. Sea ice is a marine habitat, which is composed of a matrix of solid ice and pockets of saline water in which Ciliophora thrive. Here, we used phylogenetic placement to identify Ciliophora 18S ribosomal RNA reads obtained from wintertime water and sea ice, and assigned functions to the reads based on this taxonomic information. Based on our results, sea-ice Ciliophora assemblages are poorer in taxonomic and functional richness than under-ice water and water-column assemblages. Ciliophora diversity stayed stable throughout the ice-covered season both in sea ice and in water, although the assemblages changed during the course of our sampling. Under-ice water and the water column were distinctly predominated by planktonic orders Choreotrichida and Oligotrichida, which led to significantly lower taxonomic and functional evenness in water than in sea ice. In addition to planktonic Ciliophora, assemblages in sea ice included a set of moderately abundant surface-oriented species. Omnivory (feeding on bacteria and unicellular eukaryotes) was the most common feeding type but was not as predominant in sea ice as in water. Sea ice included cytotrophic (feeding on unicellular eukaryotes), bacterivorous and parasitic Ciliophora in addition to the predominant omnivorous Ciliophora. Potentially mixotrophic Ciliophora predominated the water column and heterotrophic Ciliophora sea ice. Our results highlight sea ice as an environment that creates a set of variable habitats, which may be threatened by the diminishing extent of sea ice due to changing climate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maura Rojas-Pirela ◽  
Lisvaneth Medina ◽  
Maria Verónica Rojas ◽  
Ana Isabel Liempi ◽  
Christian Castillo ◽  
...  

Apicomplexans are a group of pathogenic protists that cause various diseases in humans and animals that cause economic losses worldwide. These unicellular eukaryotes are characterized by having a complex life cycle and the ability to evade the immune system of their host organism. Infections caused by some of these parasites affect millions of pregnant women worldwide, leading to various adverse maternal and fetal/placental effects. Unfortunately, the exact pathogenesis of congenital apicomplexan diseases is far from being understood, including the mechanisms of how they cross the placental barrier. In this review, we highlight important aspects of the diseases caused by species of Plasmodium, Babesia, Toxoplasma, and Neospora, their infection during pregnancy, emphasizing the possible role played by the placenta in the host-pathogen interaction.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tom Dierschke ◽  
Eduardo Flores-Sandoval ◽  
Madlen I Rast-Somssich ◽  
Felix Althoff ◽  
Sabine Zachgo ◽  
...  

Eukaryotic life cycles alternate between haploid and diploid phases and in phylogenetically diverse unicellular eukaryotes, expression of paralogous homeodomain genes in gametes primes the haploid-to-diploid transition. In the unicellular chlorophyte alga Chlamydomonas, KNOX and BELL TALE-homeodomain genes mediate this transition. We demonstrate that in the liverwort Marchantia polymorpha, paternal (sperm) expression of three of five phylogenetically diverse BELL genes, MpBELL234, and maternal (egg) expression of both MpKNOX1 and MpBELL34 mediate the haploid-to-diploid transition. Loss-of-function alleles of MpKNOX1 result in zygotic arrest, whereas a loss of either maternal or paternal MpBELL234 results in variable zygotic and early embryonic arrest. Expression of MpKNOX1 and MpBELL34 during diploid sporophyte development is consistent with a later role for these genes in patterning the sporophyte. These results indicate that the ancestral mechanism to activate diploid gene expression was retained in early diverging land plants and subsequently co-opted during evolution of the diploid sporophyte body.


Open Biology ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 210116
Author(s):  
Silje Anda ◽  
Erik Boye ◽  
Kay Oliver Schink ◽  
Beata Grallert

Cellular asymmetry plays a major role in the ageing and evolution of multicellular organisms. However, it remains unknown how the cell distinguishes ‘old’ from ‘new’ and whether asymmetry is an attribute of highly specialized cells or a feature inherent in all cells. Here, we investigate the segregation of three asymmetric features: old and new DNA, the spindle pole body (SPB, the centrosome analogue) and the old and new cell ends, using a simple unicellular eukaryote, Schizosaccharomyces pombe . To our knowledge, this is the first study exploring three asymmetric features in the same cells. We show that of the three chromosomes of S. pombe , chromosome I containing the new parental strand, preferentially segregated to the cells inheriting the old cell end. Furthermore, the new SPB also preferentially segregated to the cells inheriting the old end. Our results suggest that the ability to distinguish ‘old’ from ‘new’ and to segregate DNA asymmetrically are inherent features even in simple unicellular eukaryotes.


2021 ◽  
Vol 22 (15) ◽  
pp. 7779
Author(s):  
Minu Chaudhuri ◽  
Anuj Tripathi ◽  
Fidel Soto Gonzalez

Mitochondria are essential in eukaryotes. Besides producing 80% of total cellular ATP, mitochondria are involved in various cellular functions such as apoptosis, inflammation, innate immunity, stress tolerance, and Ca2+ homeostasis. Mitochondria are also the site for many critical metabolic pathways and are integrated into the signaling network to maintain cellular homeostasis under stress. Mitochondria require hundreds of proteins to perform all these functions. Since the mitochondrial genome only encodes a handful of proteins, most mitochondrial proteins are imported from the cytosol via receptor/translocase complexes on the mitochondrial outer and inner membranes known as TOMs and TIMs. Many of the subunits of these protein complexes are essential for cell survival in model yeast and other unicellular eukaryotes. Defects in the mitochondrial import machineries are also associated with various metabolic, developmental, and neurodegenerative disorders in multicellular organisms. In addition to their canonical functions, these protein translocases also help maintain mitochondrial structure and dynamics, lipid metabolism, and stress response. This review focuses on the role of Tim50, the receptor component of one of the TIM complexes, in different cellular functions, with an emphasis on the Tim50 homologue in parasitic protozoan Trypanosoma brucei.


Sign in / Sign up

Export Citation Format

Share Document