A Noise-Filtering Approach for Spatio-temporal Event Detection in Social Media

Author(s):  
Yuan Liang ◽  
James Caverlee ◽  
Cheng Cao
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yasmeen George ◽  
Shanika Karunasekera ◽  
Aaron Harwood ◽  
Kwan Hui Lim

AbstractA key challenge in mining social media data streams is to identify events which are actively discussed by a group of people in a specific local or global area. Such events are useful for early warning for accident, protest, election or breaking news. However, neither the list of events nor the resolution of both event time and space is fixed or known beforehand. In this work, we propose an online spatio-temporal event detection system using social media that is able to detect events at different time and space resolutions. First, to address the challenge related to the unknown spatial resolution of events, a quad-tree method is exploited in order to split the geographical space into multiscale regions based on the density of social media data. Then, a statistical unsupervised approach is performed that involves Poisson distribution and a smoothing method for highlighting regions with unexpected density of social posts. Further, event duration is precisely estimated by merging events happening in the same region at consecutive time intervals. A post processing stage is introduced to filter out events that are spam, fake or wrong. Finally, we incorporate simple semantics by using social media entities to assess the integrity, and accuracy of detected events. The proposed method is evaluated using different social media datasets: Twitter and Flickr for different cities: Melbourne, London, Paris and New York. To verify the effectiveness of the proposed method, we compare our results with two baseline algorithms based on fixed split of geographical space and clustering method. For performance evaluation, we manually compute recall and precision. We also propose a new quality measure named strength index, which automatically measures how accurate the reported event is.


2021 ◽  
Author(s):  
Hansi Hettiarachchi ◽  
Mariam Adedoyin-Olowe ◽  
Jagdev Bhogal ◽  
Mohamed Medhat Gaber

AbstractSocial media is becoming a primary medium to discuss what is happening around the world. Therefore, the data generated by social media platforms contain rich information which describes the ongoing events. Further, the timeliness associated with these data is capable of facilitating immediate insights. However, considering the dynamic nature and high volume of data production in social media data streams, it is impractical to filter the events manually and therefore, automated event detection mechanisms are invaluable to the community. Apart from a few notable exceptions, most previous research on automated event detection have focused only on statistical and syntactical features in data and lacked the involvement of underlying semantics which are important for effective information retrieval from text since they represent the connections between words and their meanings. In this paper, we propose a novel method termed Embed2Detect for event detection in social media by combining the characteristics in word embeddings and hierarchical agglomerative clustering. The adoption of word embeddings gives Embed2Detect the capability to incorporate powerful semantical features into event detection and overcome a major limitation inherent in previous approaches. We experimented our method on two recent real social media data sets which represent the sports and political domain and also compared the results to several state-of-the-art methods. The obtained results show that Embed2Detect is capable of effective and efficient event detection and it outperforms the recent event detection methods. For the sports data set, Embed2Detect achieved 27% higher F-measure than the best-performed baseline and for the political data set, it was an increase of 29%.


2021 ◽  
Vol 94 ◽  
pp. 107317
Author(s):  
Guoming Lu ◽  
Yaqiao Mu ◽  
Jianbin Gu ◽  
Franck A.P. Kouassi ◽  
Chenxi Lu ◽  
...  
Keyword(s):  

Author(s):  
Yuheng Hu ◽  
Yili Hong

Residents often rely on newspapers and television to gather hyperlocal news for community awareness and engagement. More recently, social media have emerged as an increasingly important source of hyperlocal news. Thus far, the literature on using social media to create desirable societal benefits, such as civic awareness and engagement, is still in its infancy. One key challenge in this research stream is to timely and accurately distill information from noisy social media data streams to community members. In this work, we develop SHEDR (social media–based hyperlocal event detection and recommendation), an end-to-end neural event detection and recommendation framework with a particular use case for Twitter to facilitate residents’ information seeking of hyperlocal events. The key model innovation in SHEDR lies in the design of the hyperlocal event detector and the event recommender. First, we harness the power of two popular deep neural network models, the convolutional neural network (CNN) and long short-term memory (LSTM), in a novel joint CNN-LSTM model to characterize spatiotemporal dependencies for capturing unusualness in a region of interest, which is classified as a hyperlocal event. Next, we develop a neural pairwise ranking algorithm for recommending detected hyperlocal events to residents based on their interests. To alleviate the sparsity issue and improve personalization, our algorithm incorporates several types of contextual information covering topic, social, and geographical proximities. We perform comprehensive evaluations based on two large-scale data sets comprising geotagged tweets covering Seattle and Chicago. We demonstrate the effectiveness of our framework in comparison with several state-of-the-art approaches. We show that our hyperlocal event detection and recommendation models consistently and significantly outperform other approaches in terms of precision, recall, and F-1 scores. Summary of Contribution: In this paper, we focus on a novel and important, yet largely underexplored application of computing—how to improve civic engagement in local neighborhoods via local news sharing and consumption based on social media feeds. To address this question, we propose two new computational and data-driven methods: (1) a deep learning–based hyperlocal event detection algorithm that scans spatially and temporally to detect hyperlocal events from geotagged Twitter feeds; and (2) A personalized deep learning–based hyperlocal event recommender system that systematically integrates several contextual cues such as topical, geographical, and social proximity to recommend the detected hyperlocal events to potential users. We conduct a series of experiments to examine our proposed models. The outcomes demonstrate that our algorithms are significantly better than the state-of-the-art models and can provide users with more relevant information about the local neighborhoods that they live in, which in turn may boost their community engagement.


2021 ◽  
Author(s):  
Miguel-Ángel Fernández-Torres ◽  
J. Emmanuel Johnson ◽  
María Piles ◽  
Gustau Camps-Valls

<p>Automatic anticipation and detection of extreme events constitute a major challenge in the current context of climate change. Machine learning approaches have excelled in detection of extremes and anomalies in Earth data cubes recently, but are typically both computationally costly and supervised, which hamper their wide adoption. We alternatively present here an unsupervised, efficient, generative approach for extreme event detection, whose performance is illustrated for drought detection in Europe during the severe Russian heat wave in 2010. The core architecture of the model is generic and could naturally be extended to the detection of other kinds of anomalies. First, it computes hierarchical appearance (spatial) and motion (temporal) representations of several informative Essential Climate Variables (ECVs), including soil moisture, land surface temperature, as well as features describing vegetation health. Then, these representations are combined using Gaussianization Flows that yield a spatio-temporal anomaly score. This allows the proposed model not only to detect droughts areas, but also to explain why they were produced, monitoring the individual contributions of each of the ECVs to the indicator at its output.</p>


Sign in / Sign up

Export Citation Format

Share Document