FRel: A Freshness Language Model for Optimizing Real-Time Web Search

Author(s):  
Mariem Bambia ◽  
Rim Faiz
Keyword(s):  
2013 ◽  
Vol 303-306 ◽  
pp. 1420-1425
Author(s):  
Qiang Pu ◽  
Ahmed Lbath ◽  
Da Qing He

Mobile personalized web search has been introduced for the purpose of distinguishing mobile user's personal different search interest. We first take the user's location information into account to do a geographic query expansion, then present an approach to personalizing web search for mobile users within language modeling framework. We estimate a user mixed model estimated according to both activated ontological topic model-based feedback and user interest model to re-rank the results from geographic query expansion. Experiments show that language model based re-ranking method is effective in presenting more relevant documents on the top retrieved results to mobile users. The main contribution of the improvements comes from the consideration of geographic information, ontological topic information and user interests together to find more relevant documents for satisfying their personal information need.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. KS169-KS182 ◽  
Author(s):  
Xiong Zhang ◽  
Jie Zhang

Similar to a web search engine, we have developed a microseismic search engine that can estimate an event location and the focal mechanism in less than a second to monitor the hydraulic fracturing process. The method was extended from a real-time earthquake monitoring approach for seismological applications. We first calculate the full waveforms of all possible microseismic events over a 3D grid with a known velocity model for a given acquisition geometry to create a database. We then index and rank all of the seismic waveforms in the database by following the characteristics of the phase and amplitude of the waveform through a computer fast search technology, specifically, the multiple randomized k-dimensional tree method. When a microseismic event occurs, the approximate best matches to the entry waveform are found immediately by comparing the characteristic features between the input data and the database. The method returns not just one but a series of solutions, similar to a web search engine. Thus, we can obtain a solution space that delineates the resolution and confidence level of the results. Also similar to a web search engine, the microseismic search engine does not require any input parameter or processing experience; thus, the solutions are the same for any user. Numerical tests suggest that the waveform search approach is insensitive to random and correlated noises. However, if the correlation values between the input data and best matches in the database are too low, suggesting unreliable results, the solution may be rejected automatically by applying a preset threshold. We have applied the method to real data, and found great potential for the routine real-time monitoring of microseismic events during hydraulic fracturing.


Author(s):  
Zhixiang Chen ◽  
Binhai Zhu ◽  
Xiannong Meng

In this chapter, machine-learning approaches to real-time intelligent Web search are discussed. The goal is to build an intelligent Web search system that can find the user’s desired information with as little relevance feedback from the user as possible. The system can achieve a significant search precision increase with a small number of iterations of user relevance feedback. A new machine-learning algorithm is designed as the core of the intelligent search component. This algorithm is applied to three different search engines with different emphases. This chapter presents the algorithm, the architectures, and the performances of these search engines. Future research issues regarding real-time intelligent Web search are also discussed.


2010 ◽  
Author(s):  
Toru Imai ◽  
Shinichi Homma ◽  
Akio Kobayashi ◽  
Takahiro Oku ◽  
Shoei Sato

Healthcare ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 156
Author(s):  
Abdullah Bin Shams ◽  
Ehsanul Hoque Apu ◽  
Ashiqur Rahman ◽  
Md. Mohsin Sarker Raihan ◽  
Nazeeba Siddika ◽  
...  

Misinformation such as on coronavirus disease 2019 (COVID-19) drugs, vaccination or presentation of its treatment from untrusted sources have shown dramatic consequences on public health. Authorities have deployed several surveillance tools to detect and slow down the rapid misinformation spread online. Large quantities of unverified information are available online and at present there is no real-time tool available to alert a user about false information during online health inquiries over a web search engine. To bridge this gap, we propose a web search engine misinformation notifier extension (SEMiNExt). Natural language processing (NLP) and machine learning algorithm have been successfully integrated into the extension. This enables SEMiNExt to read the user query from the search bar, classify the veracity of the query and notify the authenticity of the query to the user, all in real-time to prevent the spread of misinformation. Our results show that SEMiNExt under artificial neural network (ANN) works best with an accuracy of 93%, F1-score of 92%, precision of 92% and a recall of 93% when 80% of the data is trained. Moreover, ANN is able to predict with a very high accuracy even for a small training data size. This is very important for an early detection of new misinformation from a small data sample available online that can significantly reduce the spread of misinformation and maximize public health safety. The SEMiNExt approach has introduced the possibility to improve online health management system by showing misinformation notifications in real-time, enabling safer web-based searching on health-related issues.


Sign in / Sign up

Export Citation Format

Share Document