Content Based Image Retrieval for Large Medical Image Corpus

Author(s):  
Gjorgji Strezoski ◽  
Dario Stojanovski ◽  
Ivica Dimitrovski ◽  
Gjorgji Madjarov
Author(s):  
Chia-Hung Wei ◽  
Chang-Tsun Li ◽  
Roland Wilson

Content-based image retrieval (CBIR) makes use of image features, such as color and texture, to index images with minimal human intervention. Content-based image retrieval can be used to locate medical images in large databases. This chapter introduces a content-based approach to medical image retrieval. Fundamentals of the key components of content-based image retrieval systems are introduced first to give an overview of this area. A case study, which describes the methodology of a CBIR system for retrieving digital mammogram database, is then presented. This chapter is intended to disseminate the knowledge of the CBIR approach to the applications of medical image management and to attract greater interest from various research communities to rapidly advance research in this field.


2010 ◽  
Vol 108-111 ◽  
pp. 201-206 ◽  
Author(s):  
Hui Liu ◽  
Cai Ming Zhang ◽  
Hua Han

Among various content-based image retrieval (CBIR) methods based on active learning, support vector machine(SVM) active learning is popular for its application to relevance feedback in CBIR. However, the regular SVM active learning has two main drawbacks when used for relevance feedback. Furthermore, it’s difficult to collect vast amounts of labeled data and easy for unlabeled data to image examples. Therefore, it is necessary to define conditions to utilize the unlabeled examples enough. This paper presented a method of medical images retrieval about semi-supervised learning based on SVM for relevance feedback in CBIR. This paper also introduced an algorithm about defining two learners, both learners are re-trained after every relevance feedback round, and then each of them gives every image in a rank. Experiments show that using semi-supervised learning idea in CBIR is beneficial, and the proposed method achieves better performance than some existing methods.


2005 ◽  
Vol 44 (02) ◽  
pp. 154-160 ◽  
Author(s):  
V. Breton ◽  
I. E. Magnin ◽  
J. Montagnat

Summary Objectives: In this paper we study the impact of executing a medical image database query application on the grid. For lowering the total computation time, the image database is partitioned into subsets to be processed on different grid nodes. Methods: A theoretical model of the application complexity and estimates of the grid execution overhead are used to efficiently partition the database. Results: We show results demonstrating that smart partitioning of the database can lead to significant improvements in terms of total computation time. Conclusions: Grids are promising for content-based image retrieval in medical databases.


Author(s):  
Vinayak Majhi ◽  
Sudip Paul

Content-based image retrieval is a promising technique to access visual data. With the huge development of computer storage, networking, and the transmission technology now it becomes possible to retrieve the image data beside the text. In the traditional way, we find the content of image by the tagged image with some indexed text. With the development of machine learning technique in the domain of artificial intelligence, the feature extraction techniques become easier for CBIR. The medical images are continuously increasing day by day where each image holds some specific and unique information about some specific disease. The objectives of using CBIR in medical diagnosis are to provide correct and effective information to the specialist for the quality and efficient diagnosis of the disease. Medical image content requires different types of CBIR technique for different medical image acquisition techniques such as MRI, CT, PET Scan, USG, MRS, etc. So, in this concern, each CBIR technique has its unique feature extraction algorithm for each acquisition technique.


Data Mining ◽  
2013 ◽  
pp. 1097-1113
Author(s):  
Jianhua Yao ◽  
Ronald M. Summers

The growing repositories of clinical imaging data generate a need for effective image management and access that demands more than simple text-based queries. Content-Based Image Retrieval (CBIR) is an active research field and has drawn attention in recent years. It is a technique to organize and search image archives by their visual content. It is a multi-discipline field that integrates technologies from computer vision, machine learning, information retrieval, human-machine interaction, database systems, and data mining. CBIR consists of four main components: database and indexing, feature extraction, query formation and interface, and similarity measures. The applications of CBIR to the medical field include PACS integration, image annotation/codification, computer-aided diagnosis, case-based reasoning, and teaching tools. This chapter intends to disseminate the CBIR techniques to their applications to medical image management and analysis and to attract greater interest from various research communities to advance research in this field.


2020 ◽  
Vol 17 (12) ◽  
pp. 5550-5562
Author(s):  
R. Inbaraj ◽  
G. Ravi

Content-Based Image Retrieval (CBIR) is another yet broadly recognized method for distinguishing images from monstrous and unannotated image databases. With the improvement of network and mixed media headways ending up being increasingly famous, customers are not content with the regular information retrieval progresses. So nowadays, Content-Based Image Retrieval (CBIR) is the perfect and fast recovery source. Lately, various strategies have been created to improve CBIR execution. Data clustering is an overlooked method of hiding formatting extraction from large data blocks. With large data sets, there is a possibility of high dimensionality Models are a challenging domain with both massive numerical accuracy and efficiency for multidimensional data sets. The calibration and rich information dataset contain the problem of recovery and handling of medical images. Every day, more medical images were converted to digital format. Therefore, this work has applied these data to manage and file a novel approach, the “Clustering (MHC) Approach Using Content-Based Medical Image Retrieval Hybrid.” This work is implemented as four levels. With each level, the effectiveness of job retention is improved. Compared to some of the existing works that are being done in the analysis of this work’s literature, the results of this work are compared. The classification and learning features are used to retrieve medical images in a database. The proposed recovery system performs better than the traditional approach; with precision, recall, F-measure, and accuracy of proposed method are 97.29%, 95.023%, 4.36%, and 98.55% respectively. The recommended approach is most appropriate for recuperating clinical images for various parts of the body.


Sign in / Sign up

Export Citation Format

Share Document