Design of Shaping Machine and Tooling Systems for Gear Manufacturing

Author(s):  
A. Krivosheya ◽  
Ju. Danilchenko ◽  
M. Storchak ◽  
S. Pasternak
Keyword(s):  
Author(s):  
Claude Gosselin ◽  
Jack Masseth ◽  
Wei Liang

In the manufacturing of spiral-bevel and hypoid gears, circular cutter dimensions are usually based on the desired performance of a gear set. In large manufacturing operations, where several hundred gear geometries may have been cut over the years, the necessary cutter inventory may become quite large since the cutter diameters will differ from one geometry to another, which results in used storage space and associated costs in purchasing and maintaining the cutter parts. Interchangeability of cutters is therefore of significant interest to reduce cost while maintaining approved tooth geometries. An algorithm is presented which allows the use of a different cutter, either in diameter and/or pressure angle, to obtain the same tooth flank surface topography. A test case is presented to illustrate the usefulness of the method: the OB cutter diameter of an hypoid pinion is changed from 8.9500" to 9.1000". CMM results and the comparison of the bearing patterns before and after change show excellent correlation, and indicate that the new pinion can be used in place of the original pinion without performance or quality problems. Significant cost reductions may be obtained with the application of the method.


2012 ◽  
Vol 557-559 ◽  
pp. 2225-2228
Author(s):  
Bing Yu ◽  
Lian Hong Zhang ◽  
Hong Qi Du ◽  
Fu Cong Liu

Large gear is widely used as a key component of heavy machineries. Gear shaping is the most commonly process of large gear manufacturing. For the design of large gear shaper, the determination of its main driving force depends on the empirical formula. However, its result has shown that the main driving force is much larger than what really needs, which produces a lot of waste. A novel analytical method is proposed in this paper. According to this method, the cutting area can be calculated precisely, and the design of main driving force will be more reasonably, it also provides the theoretical foundation for the design of large gear shaper.


Author(s):  
J Hedlund ◽  
A Lehtovaara

Gear analysis is typically performed using calculation based on gear standards. Standards provide a good basis in gear geometry calculation for involute gears, but these are unsatisfactory for handling geometry deviations such as tooth flank modifications. The efficient utilization of finite-element calculation also requires the geometry generation to be parameterized. A parameterized numerical approach was developed to create discrete helical gear geometry and contact line by simulating the gear manufacturing, i.e. the hobbing process. This method is based on coordinate transformations and a wide set of numerical calculation points and their synchronization, which permits deviations from common involute geometry. As an example, the model is applied to protuberance tool profile and grinding with tip relief. A fairly low number of calculation points are needed to create tooth flank profiles where error is <1 μm.


2012 ◽  
Vol 522 ◽  
pp. 268-271
Author(s):  
Ling Yan Sun ◽  
Qin Xiang Xia ◽  
Xiu Quan Cheng ◽  
Bang Yan Ye

Spin-forming of part with internal tooth is a new technology of the near-net forming in gear manufacturing field. And the main purpose of the parts spin-forming is to shape teeth on the internal surface of blank. In order to improve the forming quality of internal tooth, the effect of roller on tooth height of spline was investigated by processing experiments and finite element simulation. The result indicates that, for full-radius roller, a large nose radius has also witnessed a discernible growth in spinning force and tooth height; considering the uniformity of tooth height distribution of spun part and decrease in forming force, the bio-conical roller is more suitable for this forming process


2018 ◽  
pp. 195-216
Author(s):  
Alexander L. Kapelevich
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document