Kinematic Modeling of the Gear Shaping Based Novel Cutting Area Analytical Method for Large Gear Shaper

2012 ◽  
Vol 557-559 ◽  
pp. 2225-2228
Author(s):  
Bing Yu ◽  
Lian Hong Zhang ◽  
Hong Qi Du ◽  
Fu Cong Liu

Large gear is widely used as a key component of heavy machineries. Gear shaping is the most commonly process of large gear manufacturing. For the design of large gear shaper, the determination of its main driving force depends on the empirical formula. However, its result has shown that the main driving force is much larger than what really needs, which produces a lot of waste. A novel analytical method is proposed in this paper. According to this method, the cutting area can be calculated precisely, and the design of main driving force will be more reasonably, it also provides the theoretical foundation for the design of large gear shaper.

2020 ◽  
Vol 0 (4) ◽  
pp. 29-32
Author(s):  
B.M. GAREEV ◽  
◽  
A.M. ABDRAKHMANOV ◽  
G.L. SHARIPOV ◽  
◽  
...  

The photoluminescence of carbon quantum dots synthesized from natural honey and mixtures of honey and sugar has been studied. An increase in the sugar content leads to a decrease in the photoluminescence intensity without changing the shape of the luminescence spectrum of these quantum dots aqueous solutions, which is associated with a decrease in the yield of their synthesis in the sugar presence. The discovered effect can be used to detect sugar in honey. When examining five different market samples of flower honey using this method, two of them showed a significant decrease in the photoluminescence intensity. A laboratory test for compliance with GOST 19792-2017 Standard requirements established an excess of the sucrose content in these samples. Luminescent determination of sugar in honey does not require complicated equipment and can be used to develop a new analytical method for determining the sugar content in counterfeit natural honey.


Author(s):  
Mohamed H. EL-Saeid ◽  
Ashraf S. Hassanin ◽  
Abdulqader Y. Bazeyad ◽  
Norhan M. Hamza
Keyword(s):  

2021 ◽  
Vol 164 ◽  
pp. 105964
Author(s):  
Amira F. El-Yazbi ◽  
Yasmine Khalifa ◽  
Mohammed A.W. Elkhatib ◽  
Ahmed F. El-Yazbi

2012 ◽  
Vol 9 (2) ◽  
pp. 970-979
Author(s):  
Young-Kyo Seo ◽  
Sung-Ok Baek

Some of glycol ethers, such as 2-methoxyethanol (2-ME) and 2-ethoxyethanol (2-EE) are known to be toxic and classified as hazardous air pollutants in USA, Japan and Germany. In Korea, however, there has been no study conducted so far for these compounds in ambient air. In addition, no clear methodologies for the measurement of glycol ethers have been yet established. We carried out this study to evaluate a sampling and analytical method for the determination of glycol ethers, in ambient air samples collected in specific industrial areas of South Korea. To measure glycol ethers, adsorption sampling and thermal desorption with GC/MS analysis were used in this study. The analytical method showed good repeatability, linearity and sensitivity. The lower detection limits were estimated to be approximately 0.3∼0.5 ppb. Based on storage tests, it was suggested that samples should be analyzed within two weeks. It was also demonstrated that this method can be used for the simultaneous measurement of glycol ethers and other aromatic VOCs such as benzene, toluene, and xylenes. Field sampling campaign was carried out at 2 sites, located in a large industrial area, from October 2006 to June 2007, and a total of 480 samples were collected seasonally. Among them, 2-ME was not detected from any samples, while 2-EE and 2-Ethyloxyethylacetate (2-EEA) were found in 7 and 70 samples, respectively. The measured concentrations of 2-EE and 2-EEA for samples were ranged from 0.7-2.5 ppb and from 0.5-10.5 ppb, respectively. To our knowledge, this is the first measurement report for glycol ethers in the ambient atmosphere not only in Korea but also the rest of the world.


2013 ◽  
Vol 96 (3) ◽  
pp. 670-675 ◽  
Author(s):  
Balwinder Singh ◽  
Kousik Mandal ◽  
Sanjay K Sahoo ◽  
Urvashi Bhardwaj ◽  
Raminderjit Singh Battu

Abstract An easy and simple analytical method was standardized and validated for the estimation of residues of spirotetramat and its metabolite spirotetramat cis enol in various substrates: okra fruits, brinjal leaves and fruits, green chili, red chili, and soil. The samples were extracted with acetonitrile, diluted with brine solution, partitioned into dichloromethane, dried over anhydrous sodium sulfate, and cleaned up by treatment with activated charcoal powder. Final clear extracts were concentrated under vacuum and reconstituted with HPLC grade acetonitrile. Residues were estimated using HPLC with a photodiode array detector and a C18 column, and confirmed by HPTLC. Acetonitrile was used as the mobile phase at 0.4 mL/min. Both spirotetramat and spirotetramat cis enol presented distinct peak at retention times of 8.518 and 7.598 min, respectively. Consistent recoveries ranging from 82 to 97% for spirotetramat and spirotetramat cis enol were observed when samples were spiked at 1.00 to 0.03 mg/kg levels. The LOQ of the method was found to be 0.03 mg/kg. The analytical method was validated in terms of parameters, including selectivity, linearity, precision, and accuracy.


Sign in / Sign up

Export Citation Format

Share Document