tooth flank
Recently Published Documents


TOTAL DOCUMENTS

295
(FIVE YEARS 53)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
pp. 270
Author(s):  
Andreas Rohrmoser ◽  
Christoph Bode ◽  
Benjamin Schleich ◽  
Hinnerk Hagenah ◽  
Sandro Wartzack ◽  
...  

Gear pairs made of the material pairing metal-polymer provide advantages, such as a reduced weight, beneficial damping properties and the possibility to be operated in dry running conditions. However, the service life of the pairing is limited due to wear. The properties of the metallic gearing have a significant influence on the wear behavior of the material pairing. From previous investigations, the influence of the surface topography and the flank hardness of the metal pinion is known. With regard to resource saving and efficient manufacturing of the metal pinion, cold forging offers benefits. Through cold forging, metallic gears for the material pairing can be produced ready-to-use in a process suitable for serial production. In order to enable manufacturing by extrusion, the application of gear radii is necessary. The gear radii significantly affect the extrusion process and the achievable gear properties. However, the influence of gear radii on wear within the metal-polymer material pairing has not yet been investigated. Within this contribution, the influence of the gear radii on the contact behavior as well as the resulting local load and wear of the tooth flank is determined. For this purpose, wear tests with aluminum (AlMgSi1) and steel (16MnCr5) gears with different gear radii within the pairing with polyamide (PA66) gears were performed. It has been shown that the local wear of the tooth flank can be attributed to the local load and that adjusted gear radii lead to a varying load and wear of the metal and polymer gears. Based on the findings, functional relationships regarding the choice of gear radii and the wear behavior are derived which can be applied in the design of cold forged gears.


2021 ◽  
Author(s):  
Mingyang Wang ◽  
Yuehai Sun

Abstract To improve the meshing performance and increase the bearing capacity and service life of spiral gear pairs, the cutter head approximation machining method based on controlling topological deviations was proposed to solve the problem where line contact spiral bevel gears with tapered teeth depth cannot be directly machined by cutter heads. First, the mathematical model of line contact conjugate flanks was established, and meshing equations and conjugate flank equations of bevel gear pairs were derived. Second, the gear tooth flank was set as the datum tooth flank for priority machining, and the pinion theoretical tooth flank which is fully conjugate with the gear tooth flank and the pinion machining tooth flank matching with the gear were solved. Then, the geometric topological deviations model of the comparison between the pinion machining tooth flank and its theoretical tooth flank can be established. Finally, with the pinion machining tooth flank approaching its theoretical tooth flank as the modification, the additional cutting motions and machining compensation parameters of cutter heads were obtained to control the pinion machining tooth flank deviations and reduce them to the allowable deviations of its theoretical tooth flank. The contact simulation analysis and rolling test verified the correctness of the line contact conjugate flank model and feasibility of the cutter head approximation machining method.


Author(s):  
Xian-Long Peng

The conventional tooth surface of a face gear is difficult to manufacture, and the cutter for the face gear cutting is not uniform even though the parameters of the pinion mating with the face gear slightly change. Based on the analysis of the geometry features of the tooth surface, a new developable ruled surface is defined as the tooth flank of the face gear, for which the most important geometry feature is that the flank could be represented by a family of straight lines, hence it could be generated by a straight-edged cutter. The mathematical models of the new ruled tooth surface, the cutter and the generation method are presented, the deviation between the ruled surface and the conventional surface, the correction of the ruled surface to reduce the deviation are investigated through numerical examples. The manufacturing process is simulated by VERICUT software, and the results demonstrate that even when the principle deviation is added to the machined deviation, the absolute deviation is on the micro-scale. The meshing and contact simulation shows that the new surface could obtain good meshing performance when the number of face gear teeth is greater than three times the number of pinion teeth. This research provides a new method for manufacturing face gears.


2021 ◽  
Author(s):  
Xian Wang ◽  
Matt Zhu ◽  
Ke Kou ◽  
Jianning Liu ◽  
Yun Liu ◽  
...  

2021 ◽  
Author(s):  
Han ZHENGYANG ◽  
Jiang CHUANG ◽  
Deng Xiaozhong

Abstract To solve the manufacturing difficulties of non-orthogonal face gear, an efficient gear machining method referred to as power skiving is proposed. The machining principle of the power skiving and the relative position between the cutter tool and the workpiece are analyzed. Then, the mathematical model of machining non-orthogonal face gears by power skiving is established and the tooth flank equation is obtained. The installation and movement mode of non-orthogonal face gears on six-axis machine tool are analyzed and the machining parameters are calculated precisely. A method of tooth flank modification on the six-axis machine tool is presented by changing the machining parameters. The meshing performance of the obtained non-orthogonal face gear is analyzed by an example. Finally, the processing test and the tooth flank measurement are carried out. The experimental results show that the non-orthogonal face gear can be machined and modified by power skiving on the proposed six-axis machine tool.


Author(s):  
Stephan André Böhme ◽  
Gabor Szanti ◽  
Joni Keski-Rahkonen ◽  
Tami Komssi ◽  
José Garcia Santaella ◽  
...  
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3588
Author(s):  
Brigita Polanec ◽  
Franc Zupanič ◽  
Tonica Bončina ◽  
Frančišek Tašner ◽  
Srečko Glodež

A comprehensive experimental investigation of the wear behaviour of coated spur polymer gears made of POM is performed in this study. The three physical vapour deposition (PVD) coatings investigated were aluminium (Al), chromium (Cr), and chromium nitrite (CrN). Al was deposited in three process steps: By plasma activation, metallisation of Al by the magnetron sputtering process, and by plasma polymerisation. Cr deposition was performed in only one step, namely, the metallization of Cr by the magnetron sputtering process. The deposition of CrN was carried out in two steps: the first involved the metallization of Cr by the magnetron sputtering process while the second step, vapour deposition, involved the reactive metallisation of Cr with nitrogen, also by the magnetron sputtering process. The gears were tested on an in-house developed testing rig for different torques (16, 20, 24 and 30 Nm) and rotational speed of 1000 rpm. The duration of the experiments was set to 13 h, when the tooth thickness, and, consequently, the wear of the tooth flank was recorded. The experimental results showed that the influence of metallisation with aluminium, chromium, and chromium nitrite surface coatings on the wear behaviour of the analysed polymer gear is not significant. This is probably due to the fact that the analysed coatings were, in all cases, very thin (less than 500 nm), and therefore did not influence the wear resistance significantly. In that respect, an additional testing using thicker coatings should be applied in the further research work.


Author(s):  
Lucas Hildebrand ◽  
Florian Dangl ◽  
Martin Sedlmair ◽  
Thomas Lohner ◽  
Karsten Stahl

AbstractGearbox housing geometry and oil guide plates strongly influence gearbox oil flow and interaction of oil with machine elements. Guided oil flow can increase gearbox efficiency and improve heat management. Recent research studies have demonstrated the potential of Computational Fluid Dynamics (CFD) simulations to predict the gearbox oil flow and no-load losses. Thereby, the influence of housing geometry and guide plates has rarely been addressed. This study focuses on a CFD analysis on the oil flow of a dip lubricated spur gear stage with a guide plate. Grid-based CFD models with different simulation setups were confronted and evaluated. Results show that the selection of the simulation setup with respect to the acceleration ramp and mesh size needs to address the considered object of investigation and the desired depth of information. An appropriate simulation setup shows great accordance with recordings of the oil distribution by a high-speed camera. A detailed analysis of the simulation results identified the contribution of different gear surface zones to the no-load gear loss torque. For the considered guide plate a strong interaction of oil flow and loss torque due to pressure forces on the tooth flank surface zones and due to shear forces on the front and tip circle surface zones of the gears was determined.


Author(s):  
K. Daubach ◽  
M. Oehler ◽  
B. Sauer

AbstractWear phenomena in worm gears are dependent on the size of the gears. Whereas larger gears are mainly affected by fatigue wear, abrasive wear is predominant in smaller gears. In this context a simulation model for abrasive wear of worm gears was developed, which is based on an energetic wear equation. This approach associates wear with solid friction energy occurring in the tooth contact. The physically-based wear simulation model includes a tooth contact analysis and tribological calculation to determine the local solid tooth friction and wear. The calculation is iterated with the modified tooth flank geometry of the worn worm wheel, in order to consider the influence of wear on the tooth contact. Experimental results on worm gears are used to determine the wear model parameter and to validate the model. A simulative study for a wide range of worm gear geometries was conducted to investigate the influence of geometry and operating conditions on abrasive wear.


Sign in / Sign up

Export Citation Format

Share Document