scholarly journals On the Black Holes in Alternative Theories of Gravity: The Case of Non-linear Massive Gravity

Author(s):  
Ivan Arraut
2015 ◽  
Vol 24 (03) ◽  
pp. 1550022 ◽  
Author(s):  
Ivan Arraut

I derive general conditions in order to explain the origin of the Vainshtein radius inside dRGT. The set of equations, which I have called "Vainshtein" conditions are extremal conditions of the dynamical metric (gμν) containing all the degrees of freedom of the theory. The Vainshtein conditions are able to explain the coincidence between the Vainshtein radius in dRGT and the scale [Formula: see text], obtained naturally from the Schwarzschild de-Sitter (S-dS) space inside general relativity (GR). In GR, this scale was interpreted as the maximum distance in order to get bound orbits. The same scale corresponds to the static observer position if we want to define the black hole temperature in an asymptotically de-Sitter space. In dRGT, the scale marks a limit after which the extra degrees of freedom of the theory become relevant.


2018 ◽  
Vol 97 (12) ◽  
Author(s):  
Konstantinos F. Dialektopoulos ◽  
Antonios Nathanail ◽  
Athanasios G. Tzikas

2016 ◽  
Vol 76 (10) ◽  
Author(s):  
Guancheng Pei ◽  
Sourabh Nampalliwar ◽  
Cosimo Bambi ◽  
Matthew J. Middleton

2018 ◽  
Vol 27 (06) ◽  
pp. 1841009 ◽  
Author(s):  
Alexander F. Zakharov

One of the most interesting astronomical objects is the Galactic Center. It is a subject of intensive astronomical observations in different spectral bands in recent years. We concentrate our discussion on a theoretical analysis of observational data of bright stars in the IR-band obtained with large telescopes. We also discuss the importance of VLBI observations of bright structures which could characterize the shadow at the Galactic Center. If we adopt general relativity (GR), there are a number of theoretical models for the Galactic Center, such as a cluster of neutron stars, boson stars, neutrino balls, etc. Some of these models were rejected or the range of their parameters is significantly constrained with consequent observations and theoretical analysis. In recent years, a number of alternative theories of gravity have been proposed because there are dark matter (DM) and dark energy (DE) problems. An alternative theory of gravity may be considered as one possible solution for such problems. Some of these theories have black hole solutions, while other theories have no such solutions. There are attempts to describe the Galactic Center with alternative theories of gravity and in this case one can constrain parameters of such theories with observational data for the Galactic Center. In particular, theories of massive gravity are intensively developing and theorists have overcome pathologies presented in the initial versions of these theories. In theories of massive gravity, a graviton is massive in contrast with GR where a graviton is massless. Now these theories are considered as an alternative to GR. For example, the LIGO–Virgo collaboration obtained the graviton mass constraint of about [Formula: see text] eV in their first publication about the discovery of the first gravitational wave detection event that resulted of the merger of two massive black holes. Surprisingly, one could obtain a consistent and comparable constraint of graviton mass at a level around [Formula: see text][Formula: see text]eV from the analysis of observational data on the trajectory of the star S2 near the Galactic Center. Therefore, observations of bright stars with existing and forthcoming telescopes such as the European extremely large telescope (E-ELT) and the thirty meter telescope (TMT) are extremely useful for investigating the structure of the Galactic Center in the framework of GR, but these observations also give a tool to confirm, rule out or constrain alternative theories of gravity. As we noted earlier, VLBI observations with current and forthcoming global networks (like the Event Horizon Telescope) are used to check the hypothesis about the presence of a supermassive black hole at the Galactic Center.


Author(s):  
Jose Luis Blázquez-Salcedo ◽  
Burkhard Kleihaus ◽  
Jutta Kunz

AbstractBlack holes represent outstanding astrophysical laboratories to test the strong gravity regime, since alternative theories of gravity may predict black hole solutions whose properties may differ distinctly from those of general relativity. When higher curvature terms are included in the gravitational action as, for instance, in the form of the Gauss–Bonnet term coupled to a scalar field, scalarized black holes result. Here we discuss several types of scalarized black holes and some of their properties.


2011 ◽  
Vol 84 (8) ◽  
Author(s):  
Paolo Pani ◽  
Caio F. B. Macedo ◽  
Luís C. B. Crispino ◽  
Vitor Cardoso

Universe ◽  
2018 ◽  
Vol 4 (10) ◽  
pp. 109 ◽  
Author(s):  
Valerio Faraoni

Classic black hole mechanics and thermodynamics are formulated for stationary black holes with event horizons. Alternative theories of gravity of interest for cosmology contain a built-in time-dependent cosmological “constant” and black holes are not stationary. Realistic black holes are anyway dynamical because they interact with astrophysical environments or, at a more fundamental level, because of backreaction by Hawking radiation. In these situations, the teleological concept of event horizon fails and apparent or trapping horizons are used instead. Even as toy models, black holes embedded in cosmological “backgrounds” and other inhomogeneous universes constitute an interesting class of solutions of various theories of gravity. We discuss the known phenomenology of apparent and trapping horizons in these geometries, focusing on spherically symmetric inhomogeneous universes.


2011 ◽  
Vol 83 (10) ◽  
Author(s):  
Sarah Vigeland ◽  
Nicolás Yunes ◽  
Leo C. Stein

2015 ◽  
Vol 24 (12) ◽  
pp. 1544021 ◽  
Author(s):  
Jeremy Sakstein ◽  
Kazuya Koyama

The Vainshtein mechanism is of paramount importance in many alternative theories of gravity. It hides deviations from general relativity (GR) in the solar system while allowing them to drive the acceleration of the cosmic expansion. Recently, a class of theories have emerged where the mechanism is broken inside astrophysical objects. In this essay, we look for novel probes of these theories by deriving the modified properties of stars and galaxies. We show that main-sequence stars are colder, less luminous and more ephemeral than GR predicts. Furthermore, the circular velocities of objects orbiting inside galaxies are slower and the lensing of light is weaker. We discuss the prospects for testing these theories using the novel phenomena presented here in light of current astrophysical surveys.


Sign in / Sign up

Export Citation Format

Share Document