scholarly journals Cosmological production of black holes: A way to constrain alternative theories of gravity

2018 ◽  
Vol 97 (12) ◽  
Author(s):  
Konstantinos F. Dialektopoulos ◽  
Antonios Nathanail ◽  
Athanasios G. Tzikas
2015 ◽  
Vol 24 (03) ◽  
pp. 1550022 ◽  
Author(s):  
Ivan Arraut

I derive general conditions in order to explain the origin of the Vainshtein radius inside dRGT. The set of equations, which I have called "Vainshtein" conditions are extremal conditions of the dynamical metric (gμν) containing all the degrees of freedom of the theory. The Vainshtein conditions are able to explain the coincidence between the Vainshtein radius in dRGT and the scale [Formula: see text], obtained naturally from the Schwarzschild de-Sitter (S-dS) space inside general relativity (GR). In GR, this scale was interpreted as the maximum distance in order to get bound orbits. The same scale corresponds to the static observer position if we want to define the black hole temperature in an asymptotically de-Sitter space. In dRGT, the scale marks a limit after which the extra degrees of freedom of the theory become relevant.


2016 ◽  
Vol 76 (10) ◽  
Author(s):  
Guancheng Pei ◽  
Sourabh Nampalliwar ◽  
Cosimo Bambi ◽  
Matthew J. Middleton

Author(s):  
Jose Luis Blázquez-Salcedo ◽  
Burkhard Kleihaus ◽  
Jutta Kunz

AbstractBlack holes represent outstanding astrophysical laboratories to test the strong gravity regime, since alternative theories of gravity may predict black hole solutions whose properties may differ distinctly from those of general relativity. When higher curvature terms are included in the gravitational action as, for instance, in the form of the Gauss–Bonnet term coupled to a scalar field, scalarized black holes result. Here we discuss several types of scalarized black holes and some of their properties.


2011 ◽  
Vol 84 (8) ◽  
Author(s):  
Paolo Pani ◽  
Caio F. B. Macedo ◽  
Luís C. B. Crispino ◽  
Vitor Cardoso

Universe ◽  
2018 ◽  
Vol 4 (10) ◽  
pp. 109 ◽  
Author(s):  
Valerio Faraoni

Classic black hole mechanics and thermodynamics are formulated for stationary black holes with event horizons. Alternative theories of gravity of interest for cosmology contain a built-in time-dependent cosmological “constant” and black holes are not stationary. Realistic black holes are anyway dynamical because they interact with astrophysical environments or, at a more fundamental level, because of backreaction by Hawking radiation. In these situations, the teleological concept of event horizon fails and apparent or trapping horizons are used instead. Even as toy models, black holes embedded in cosmological “backgrounds” and other inhomogeneous universes constitute an interesting class of solutions of various theories of gravity. We discuss the known phenomenology of apparent and trapping horizons in these geometries, focusing on spherically symmetric inhomogeneous universes.


2011 ◽  
Vol 83 (10) ◽  
Author(s):  
Sarah Vigeland ◽  
Nicolás Yunes ◽  
Leo C. Stein

2015 ◽  
Vol 24 (12) ◽  
pp. 1544021 ◽  
Author(s):  
Jeremy Sakstein ◽  
Kazuya Koyama

The Vainshtein mechanism is of paramount importance in many alternative theories of gravity. It hides deviations from general relativity (GR) in the solar system while allowing them to drive the acceleration of the cosmic expansion. Recently, a class of theories have emerged where the mechanism is broken inside astrophysical objects. In this essay, we look for novel probes of these theories by deriving the modified properties of stars and galaxies. We show that main-sequence stars are colder, less luminous and more ephemeral than GR predicts. Furthermore, the circular velocities of objects orbiting inside galaxies are slower and the lensing of light is weaker. We discuss the prospects for testing these theories using the novel phenomena presented here in light of current astrophysical surveys.


2018 ◽  
Vol 191 ◽  
pp. 01010 ◽  
Author(s):  
Alexander Zakharov

To evaluate a potential usually one analyzes trajectories of test particles. For the Galactic Center case astronomers use bright stars or photons, so there are two basic observational techniques to investigate a gravitational potential, namely, (a) monitoring the orbits of bright stars near the Galactic Center as it is going on with 10m Keck twin and four 8m VLT telescopes equipped with adaptive optics facilities (in addition, recently the IR interferometer GRAVITY started to operate with VLT); (b) measuring the size and shape of shadows around black hole with VLBI-technique using telescopes operating in mm-band. At the moment, one can use a small relativistic correction approach for stellar orbit analysis, however, in the future the approximation will not be precise enough due to enormous progress of observational facilities and recently the GRAVITY team found that the first post-Newtonian correction has to be taken into account for the gravitational redshift in the S2 star orbit case. Meanwhile for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations and their interpretations. In spite of great efforts there is a very slow progress to resolve dark matter (DM) and dark energy (DE) puzzles and in these circumstances in last years a number of alternative theories of gravity have been proposed. Parameters of these theories could be effectively constrained with of observations of the Galactic Center. We show some cases of alternative theories of gravity where their parameters are constrained with observations, in particular, we consider massive theory of gravity. We choose the alternative theory of gravity since there is a significant activity in this field and in the last years theorists demonstrated an opportunity to create such theories without ghosts, on the other hand, recently, the joint LIGO & Virgo team presented an upper limit on graviton mass such as mg< 1:2 × 10-22eV [1] analyzing gravitational wave signal in their first paper where they reported about the discovery of gravitational waves from binary black holes as it was suggested by C. Will [2]. So, the authors concluded that their observational data do not indicate a significant deviation from classical general relativity. We show that an analysis of bright star trajectories could estimate a graviton mass with a commensurable accuracy in comparison with an approach used in gravitational wave observations and the estimates obtained with these two approaches are consistent. Therefore, such an analysis gives an opportunity to treat observations of bright stars near the Galactic Center as a useful tool to obtain constraints on the fundamental gravity law. We showed that in the future graviton mass estimates obtained with analysis of trajectories of bright stars would be better than current LIGO bounds on the value, therefore, based on a potential reconstruction at the Galactic Center we obtain bounds on a graviton mass and these bounds are comparable with LIGO constraints. Analyzing size of shadows around the supermassive black hole at the Galactic Center (or/and in the center of M87) one could constrain parameters of different alternative theories of gravity as well.


Sign in / Sign up

Export Citation Format

Share Document