Stationary Workload Asymptotics

Author(s):  
Krzysztof Dębicki ◽  
Michel Mandjes
2012 ◽  
Vol 49 (3) ◽  
pp. 883-887 ◽  
Author(s):  
Offer Kella

The goal is to identify the class of distributions to which the distribution of the maximum of a Lévy process with no negative jumps and negative mean (equivalently, the stationary distribution of the reflected process) belongs. An explicit new distributional identity is obtained for the case where the Lévy process is an independent sum of a Brownian motion and a general subordinator (nondecreasing Lévy process) in terms of a geometrically distributed sum of independent random variables. This generalizes both the distributional form of the standard Pollaczek-Khinchine formula for the stationary workload distribution in the M/G/1 queue and the exponential stationary distribution of a reflected Brownian motion.


2003 ◽  
Vol 17 (4) ◽  
pp. 527-543
Author(s):  
Parijat Dube ◽  
Eitan Altman

We analyze a feedback system consisting of a finite buffer fluid queue and a responsive source. The source alternates between silence periods and active periods. At random epochs of times, the source becomes ready to send a burst of fluid. The length of the bursts (length of the active periods) are independent and identically distributed with some general distribution. The queue employs a threshold discarding policy in the sense that only those bursts at whose commencement epoch (the instant at which the source is ready to send) the workload (i.e., the amount of fluid in the buffer) is less than some preset threshold are accepted. If the burst is rejected then the source backs off from sending. We work within the framework of Poisson counter-driven stochastic differential equations and obtain the moment generating function and hence the probability density function of the stationary workload process. We then comment on the stability of this fluid queue. Our explicit characterizations will further provide useful insights and “engineering” guidelines for better network designing.


2001 ◽  
Vol 38 (3) ◽  
pp. 793-798 ◽  
Author(s):  
Naoto Miyoshi

It is well known that a simple closed-form formula exists for the stationary distribution of the workload in M/GI/1 queues. In this paper, we extend this to the general stationary framework. Namely, we consider a work-conserving single-server queueing system, where the sequence of customers’ arrival epochs and their service times is described as a general stationary marked point process, and we derive a closed-form formula for the stationary workload distribution. The key to our proof is two-fold: one is the Palm-martingale calculus, that is, the connection between the notion of Palm probability and that of stochastic intensity. The other is the preemptive-resume last-come, first-served discipline.


2014 ◽  
Vol 46 (03) ◽  
pp. 812-831 ◽  
Author(s):  
E. S. Badila ◽  
O. J. Boxma ◽  
J. A. C. Resing ◽  
E. M. M. Winands

We focus on a particular connection between queueing and risk models in a multidimensional setting. We first consider the joint workload process in a queueing model with parallel queues and simultaneous arrivals at the queues. For the case that the service times are ordered (from largest in the first queue to smallest in the last queue), we obtain the Laplace-Stieltjes transform of the joint stationary workload distribution. Using a multivariate duality argument between queueing and risk models, this also gives the Laplace transform of the survival probability of all books in a multivariate risk model with simultaneous claim arrivals and the same ordering between claim sizes. Other features of the paper include a stochastic decomposition result for the workload vector, and an outline of how the two-dimensional risk model with a general two-dimensional claim size distribution (hence, without ordering of claim sizes) is related to a known Riemann boundary-value problem.


1994 ◽  
Vol 26 (02) ◽  
pp. 556-560 ◽  
Author(s):  
P. Konstantopoulos ◽  
M. Zazanis

Perturbation analysis estimators for expectations of possibly discontinuous functions of the time-stationary workload were derived in [2]. The expressions obtained may, however, not be valid if the customer-stationary distribution of the workload has atoms (at points other than zero). This was pointed out by Brémaud and Lasgouttes in [1]. In this note we clearly state the additional condition required for the validity of the expressions in [2]. We furthermore show how our approximation scheme can also be used to obtain the correct expressions for the right and left derivatives given in [1].


2004 ◽  
Vol 46 (1/2) ◽  
pp. 113-127 ◽  
Author(s):  
Krzysztof Dębicki ◽  
Michel Mandjes
Keyword(s):  

2010 ◽  
Vol 64 (3) ◽  
pp. 253-265 ◽  
Author(s):  
Jongho Bae ◽  
Sunggon Kim

2013 ◽  
Vol 78 (3) ◽  
pp. 405-415
Author(s):  
A. Es-Saghouani ◽  
M. Mandjes
Keyword(s):  

2010 ◽  
Vol 47 (1) ◽  
pp. 109-129 ◽  
Author(s):  
Krzysztof Dębicki ◽  
Abdelghafour Es-Saghouani ◽  
Michel Mandjes

With (Qt)t denoting the stationary workload process in a queue fed by a Lévy input process (Xt)t, this paper focuses on the asymptotics of rare event probabilities of the type P(Q0 > pB, QTB > qB) for given positive numbers p and q, and a positive deterministic function TB. We first identify conditions under which the probability of interest is dominated by the ‘most demanding event’, in the sense that it is asymptotically equivalent to P(Q > max{p, q}B) for large B, where Q denotes the steady-state workload. These conditions essentially reduce to TB being sublinear (i.e. TB/B → 0 as B → ∞). A second condition is derived under which the probability of interest essentially ‘decouples’, in that it is asymptotically equivalent to P(Q > pB)P(Q > qB) for large B. For various models considered in the literature, this ‘decoupling condition’ reduces to requiring that TB is superlinear (i.e. TB / B → ∞ as B → ∞). This is not true for certain ‘heavy-tailed’ cases, for instance, the situations in which the Lévy input process corresponds to an α-stable process, or to a compound Poisson process with regularly varying job sizes, in which the ‘decoupling condition’ reduces to TB / B2 → ∞. For these input processes, we also establish the asymptotics of the probability under consideration for TB increasing superlinearly but subquadratically. We pay special attention to the case TB = RB for some R > 0; for light-tailed input, we derive intuitively appealing asymptotics, intensively relying on sample path large deviations results. The regimes obtained can be interpreted in terms of the most likely paths to overflow.


1984 ◽  
Vol 21 (4) ◽  
pp. 901-910 ◽  
Author(s):  
Barry Wolfson

It is known that for a GI/G/1 queue, if the interarrival time has finite first moment, then the (k + 1)th moment of the service time is finite if the kth moment of the stationary workload is finite. This result is extended to certain tandem and multiple-server queues.


Sign in / Sign up

Export Citation Format

Share Document