Mechanical Regulation of Microvascular Growth and Remodeling

Author(s):  
Laxminarayanan Krishnan ◽  
Steven A. LaBelle ◽  
Marissa A. Ruehle ◽  
Jeffrey A. Weiss ◽  
James B. Hoying ◽  
...  
Author(s):  
Laxminarayanan Krishnan ◽  
Steven A. LaBelle ◽  
Marissa A. Ruehle ◽  
Jeffrey A. Weiss ◽  
James B. Hoying ◽  
...  

Author(s):  
Lital Mordechay ◽  
Guillaume Le Saux ◽  
Avishay Edri ◽  
Uzi Hadad ◽  
Angel Porgador ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuanxiu Sun ◽  
Yu Yuan ◽  
Wei Wu ◽  
Le Lei ◽  
Lingli Zhang

AbstractBone marrow mesenchymal stem cells (BMSCs) refer to a heterogeneous population of cells with the capacity for self-renewal. BMSCs have multi-directional differentiation potential and can differentiate into chondrocytes, osteoblasts, and adipocytes under specific microenvironment or mechanical regulation. The activities of BMSCs are closely related to bone quality. Previous studies have shown that BMSCs and their lineage-differentiated progeny (for example, osteoblasts), and osteocytes are mechanosensitive in bone. Thus, a goal of this review is to discuss how these ubiquious signals arising from mechanical stimulation are perceived by BMSCs and then how the cells respond to them. Studies in recent years reported a significant effect of locomotion on the migration, proliferation and differentiation of BMSCs, thus, contributing to our bone mass. This regulation is realized by the various intersecting signaling pathways including RhoA/Rock, IFG, BMP and Wnt signalling. The mechanoresponse of BMSCs also provides guidance for maintaining bone health by taking appropriate exercises. This review will summarize the regulatory effects of locomotion/mechanical loading on BMSCs activities. Besides, a number of signalling pathways govern MSC fate towards osteogenic or adipocytic differentiation will be discussed. The understanding of mechanoresponse of BMSCs makes the foundation for translational medicine.


Author(s):  
Sebastian Brandstaeter ◽  
Sebastian L. Fuchs ◽  
Jonas Biehler ◽  
Roland C. Aydin ◽  
Wolfgang A. Wall ◽  
...  

AbstractGrowth and remodeling in arterial tissue have attracted considerable attention over the last decade. Mathematical models have been proposed, and computational studies with these have helped to understand the role of the different model parameters. So far it remains, however, poorly understood how much of the model output variability can be attributed to the individual input parameters and their interactions. To clarify this, we propose herein a global sensitivity analysis, based on Sobol indices, for a homogenized constrained mixture model of aortic growth and remodeling. In two representative examples, we found that 54–80% of the long term output variability resulted from only three model parameters. In our study, the two most influential parameters were the one characterizing the ability of the tissue to increase collagen production under increased stress and the one characterizing the collagen half-life time. The third most influential parameter was the one characterizing the strain-stiffening of collagen under large deformation. Our results suggest that in future computational studies it may - at least in scenarios similar to the ones studied herein - suffice to use population average values for the other parameters. Moreover, our results suggest that developing methods to measure the said three most influential parameters may be an important step towards reliable patient-specific predictions of the enlargement of abdominal aortic aneurysms in clinical practice.


Author(s):  
Kaustubh Wagh ◽  
Momoko Ishikawa ◽  
David A. Garcia ◽  
Diana A. Stavreva ◽  
Arpita Upadhyaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document