Consideration of State Representation for Semi-autonomous Reinforcement Learning of Sailing Within a Navigable Area

2015 ◽  
pp. 89-102
Author(s):  
Hideaki Manabe ◽  
Kanta Tachibana
Author(s):  
Daochen Zha ◽  
Kwei-Herng Lai ◽  
Songyi Huang ◽  
Yuanpu Cao ◽  
Keerthana Reddy ◽  
...  

We present RLCard, a Python platform for reinforcement learning research and development in card games. RLCard supports various card environments and several baseline algorithms with unified easy-to-use interfaces, aiming at bridging reinforcement learning and imperfect information games. The platform provides flexible configurations of state representation, action encoding, and reward design. RLCard also supports visualizations for algorithm debugging. In this demo, we showcase two representative environments and their visualization results. We conclude this demo with challenges and research opportunities brought by RLCard. A video is available on YouTube.


2021 ◽  
Vol 11 (21) ◽  
pp. 10337
Author(s):  
Junkai Ren ◽  
Yujun Zeng ◽  
Sihang Zhou ◽  
Yichuan Zhang

Scaling end-to-end learning to control robots with vision inputs is a challenging problem in the field of deep reinforcement learning (DRL). While achieving remarkable success in complex sequential tasks, vision-based DRL remains extremely data-inefficient, especially when dealing with high-dimensional pixels inputs. Many recent studies have tried to leverage state representation learning (SRL) to break through such a barrier. Some of them could even help the agent learn from pixels as efficiently as from states. Reproducing existing work, accurately judging the improvements offered by novel methods, and applying these approaches to new tasks are vital for sustaining this progress. However, the demands of these three aspects are seldom straightforward. Without significant criteria and tighter standardization of experimental reporting, it is difficult to determine whether improvements over the previous methods are meaningful. For this reason, we conducted ablation studies on hyperparameters, embedding network architecture, embedded dimension, regularization methods, sample quality and SRL methods to compare and analyze their effects on representation learning and reinforcement learning systematically. Three evaluation metrics are summarized, including five baseline algorithms (including both value-based and policy-based methods) and eight tasks are adopted to avoid the particularity of each experiment setting. We highlight the variability in reported methods and suggest guidelines to make future results in SRL more reproducible and stable based on a wide number of experimental analyses. We aim to spur discussion about how to assure continued progress in the field by minimizing wasted effort stemming from results that are non-reproducible and easily misinterpreted.


Author(s):  
Vincent Francois-Lavet ◽  
Guillaume Rabusseau ◽  
Joelle Pineau ◽  
Damien Ernst ◽  
Raphael Fonteneau

When an agent has limited information on its environment, the suboptimality of an RL algorithm can be decomposed into the sum of two terms: a term related to an asymptotic bias (suboptimality with unlimited data) and a term due to overfitting (additional suboptimality due to limited data). In the context of reinforcement learning with partial observability, this paper provides an analysis of the tradeoff between these two error sources. In particular, our theoretical analysis formally characterizes how a smaller state representation increases the asymptotic bias while decreasing the risk of overfitting.


Sign in / Sign up

Export Citation Format

Share Document