S.A.M. and Breast Cancer—Focus on Aspirin and Other Integrative Aspirin-Like Medicines: The Real “Natural” Options

Author(s):  
Mark A. Moyad
Keyword(s):  
BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Takahiro Nakayama ◽  
Tetsuhiro Yoshinami ◽  
Hiroyuki Yasojima ◽  
Nobuyoshi Kittaka ◽  
Masato Takahashi ◽  
...  

Abstract Background Trastuzumab emtansine (T-DM1) is a second-line standard therapy for patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. Evidence regarding post–T-DM1 treatments is currently lacking. We evaluated the effectiveness of post–T-DM1 drug therapy in patients with HER2-positive, unresectable and/or metastatic breast cancer. Methods In this multicenter, retrospective, observational study, real-world clinical data of female patients with HER2-positive breast cancer who had a history of T-DM1 treatment were consecutively collected from five sites in Japan. We investigated the effectiveness of post–T-DM1 therapy by evaluating the real-world progression-free survival (rwPFS), time to treatment failure (TTF), overall survival (OS), objective response rate (ORR), and clinical benefit rate (CBR). Tumor response was assessed by investigators according to Response Evaluation Criteria in Solid Tumors (RECIST version 1.1) guidelines. Subgroup and exploratory analyses according to background factors were also undertaken. Results Of the 205 patients who received T-DM1 treatment between 1 January 2014 and 31 December 2018, 128 were included in this study. Among the 128 patients analyzed, 105 (82%) patients received anti-HER2 therapy and 23 (18%) patients received regimens without anti-HER2 therapy. Median (95% confidence interval [CI]) rwPFS, TTF, and OS were 5.7 (4.8–6.9) months, 5.6 (4.6–6.4) months, and 22.8 (18.2–32.4) months, respectively. CBR and ORR (95% CI) were 48% (38.8–56.7) and 23% (15.1–31.4), respectively. Cox-regression analysis showed that an ECOG PS score of 0, a HER2 immunohistochemistry score of 3+, recurrent type, ≥12 month duration of T-DM1 therapy, and anti-HER2 therapy were independent variables for rwPFS. An exploratory subgroup analysis of regimens after T-DM1 showed that those with anti-HER2 therapy had a median rwPFS of 6.3 and those without anti-HER2 therapy had a median rwPFS of 4.8 months. Conclusions In the real-world setting in Japan, several post–T-DM1 regimens for patients with unresectable and/or metastatic HER2-positive breast cancer, including continuation of anti-HER2 therapy, showed some effectiveness; however, this effectiveness was insufficient. Novel therapeutic options are still needed for further improvement of PFS and OS in later treatment settings. Trial registration UMIN000038296; registered on 15 October 2019.


Author(s):  
Robert Kunzig

A couple of years ago I learned something: I learned that black holes spin. And as they spin, they drag the fabric of space-time around with them, whirling it like a tornado. “Where have you been?” you ask. “That's a direct consequence of general relativity! Lense and Thirring predicted that more than 80 years ago.” It had escaped my notice. It made my day when I (sort of) understood it. I wanted to tell someone—and by a wonderful stroke of luck, I'm paid to do just that. Days like that are why I'm a science writer—a “gee whiz” science writer, if you like. A lot of my peers these days consider the gee whiz approach outdated, naive, even a little lap-doggish; investigative reporting is in. “Isn't the real story the process of how science and medicine work?” Shannon Brownlee said recently, upon receiving a well-deserved prize for her critical reporting on medicine. “I'm talking about the power structure. I'm talking about influence. I'm talking about money.” I'm not much interested in those things. I agree they're often important—more important, no doubt, in breast cancer than in black hole research, more important the more applied and less basic the research gets. One of the real stories about medical research may well be how it is sometimes corrupted by conflicts of interest. Power, influence, and money are constants in human affairs, like sex and violence; and sometimes a science writer is forced to write about them, just as a baseball writer may be forced with heavy heart to write about contract negotiations or a doping scandal. Yet just as the “real story” about baseball remains the game itself, the “real story” about science, to me, is what makes it different from other human affairs, not the same. I'm talking about ideas. I'm talking about experiments. I'm talking about truth, and beauty, too. Most of all, I'm talking about the little nuggets of joy and delight that draw all of us, scientists and science writers alike, to this business, when with our outsized IQs we could be somewhere else pursuing larger slices of power, influence, and money.


2015 ◽  
Vol 93 (3) ◽  
pp. E40-E41
Author(s):  
L. Hwang ◽  
I.J. Boero ◽  
D.P. Triplett ◽  
R.K. Matsuno ◽  
B. Xu ◽  
...  

2020 ◽  
Vol 125 ◽  
pp. 22-30 ◽  
Author(s):  
David Pasquier ◽  
Amélie Darlix ◽  
Guillaume Louvel ◽  
Julien Fraisse ◽  
William Jacot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document