Estimation of Biomass and Net Primary Production (NPP) in West Siberian Boreal Ecosystems: In Situ and Remote Sensing Methods

Author(s):  
Anna Peregon ◽  
Natalia P. Kosykh ◽  
Nina P. Mironycheva-Tokareva ◽  
Philippe Ciais ◽  
Yoshiki Yamagata
1997 ◽  
Vol 18 (16) ◽  
pp. 3459-3471 ◽  
Author(s):  
S. E. Franklin ◽  
M. B. Lavigne ◽  
M. J. Deuling ◽  
M. A. Wulder ◽  
E. R. Hunt

2019 ◽  
Author(s):  
Harold K. Knight

Abstract. Coincident auroral far ultraviolet (FUV) and ground-based ionosonde observations are compared for the purpose of determining whether auroral FUV remote sensing algorithms that assume pure electron precipitation are biased in the presence of proton precipitation. Auroral particle transport and optical emission models, such as the Boltzmann 3-Constituent (B3C) model, predict that maximum E region electron density (NmE) values derived from auroral Lyman-Birge-Hopfield (LBH) emission assuming electron precipitation will be biased high by up to ~ 20 % for pure proton aurora, while comparisons between LBH radiances and radiances derived from in situ particle flux observations (i.e., Knight et al., 2008, 2012) indicate that the bias associated with proton aurora should be much larger. Surprisingly, in the comparisons with ionosonde observations described here, no bias associated with proton aurora is found in FUV-derived auroral NmE, which means that auroral FUV remote sensing methods for NmE are more accurate in the presence of proton precipitation than was suggested in the aforementioned earlier works. Possible explanations for the discrepancy with the earlier results are discussed.


2017 ◽  
Vol 58 ◽  
pp. 10.1-10.21 ◽  
Author(s):  
J. Bühl ◽  
S. Alexander ◽  
S. Crewell ◽  
A. Heymsfield ◽  
H. Kalesse ◽  
...  

Abstract State-of-the-art remote sensing techniques applicable to the investigation of ice formation and evolution are described. Ground-based and spaceborne measurements with lidar, radar, and radiometric techniques are discussed together with a global view on past and ongoing remote sensing measurement campaigns concerned with the study of ice formation and evolution. This chapter has the intention of a literature study and should illustrate the major efforts that are currently taken in the field of remote sensing of atmospheric ice. Since other chapters of this monograph mainly focus on aircraft in situ measurements, special emphasis is put on active remote sensing instruments and synergies between aircraft in situ measurements and passive remote sensing methods. The chapter concentrates on homogeneous and heterogeneous ice formation in the troposphere because this is a major topic of this monograph. Furthermore, methods that deliver direct, process-level information about ice formation are elaborated with a special emphasis on active remote sensing methods. Passive remote sensing methods are also dealt with but only in the context of synergy with aircraft in situ measurements.


1998 ◽  
Vol 28 (3) ◽  
pp. 375-389 ◽  
Author(s):  
Scott J Goetz ◽  
Stephen D Prince

Variability in carbon exchange, net primary production (NPP), and light-use efficiency were explored for 63 boreal forest stands in northeastern Minnesota using an ecophysiological model. The model was initialized with extensive field measurements of Populus tremuloides Michx. and Picea mariana (Mill.) BSP stand properties. The results showed that the proportion of total carbon assimilation expended in autotrophic respiration (i.e., the respiration to assimilation ratio, R/A) was significantly different for the two tree species and this explained much of the variability in the amount of net production per unit absorbed photosynthetically active radiation (APAR), referred to as PAR utilization ( epsilonn). This is the first known study to directly link variability in respiratory costs to epsilonn. Total assimilation per unit APAR ( epsilong) was much less variable than epsilonn and was not significantly different between species. Greater stomatal control on some moisture stressed sites accounted for most of the variability in epsilong. The lack of a simple relationship between light harvesting and net carbon gain indicates that estimation of net primary production with satellite remote sensing requires additional information on respiration costs; however, evidence for convergence in epsilong can be used to simplify the remote sensing of gross primary production over large areas.


Sign in / Sign up

Export Citation Format

Share Document