scholarly journals Seasonal and interannual variability of chlorophyll a and primary production in the Equatorial Atlantic: in situ and remote sensing observations

2004 ◽  
Vol 27 (2) ◽  
pp. 189-197 ◽  
Author(s):  
V. Perez
2019 ◽  
Vol 11 (12) ◽  
pp. 1426 ◽  
Author(s):  
Wei Shi ◽  
Menghua Wang ◽  
Yunlin Zhang

Using in situ remote sensing reflectance and inherent optical property (IOP) measurements, a near-infrared (NIR)-based IOP algorithm is developed and tuned for Lake Taihu, in order to derive the particle backscattering coefficient bbp(λ), total absorption coefficient at(λ), dissolved and detrital absorption coefficient adg(λ), and phytoplankton absorption coefficient aph(λ), with satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). The IOP algorithm for Lake Taihu has a reasonably good accuracy. In fact, the determination coefficients between the retrieved and in situ IOPs are 0.772, 0.638, and 0.487 for at(λ), adg(λ), and aph(λ), respectively. The IOP products in Lake Taihu that have been derived from VIIRS-SNPP observations show significant spatial and temporal variations. Southern Lake Taihu features enhanced bbp(λ) and adg(λ), while northern Lake Taihu shows higher aph(λ). The seasonal and interannual variability of adg(λ) and bbp(λ) in Lake Taihu is quantified and characterized with the highest bbp(λ) and adg(λ) in the winter, and the lowest in the summer. In the winter, bbp(443) and adg(443) can reach over ~1.5 and ~5.0 m−1, respectively, while they are ~0.5–1.0 and ~2.0 m−1 in the summer. This study shows that in Lake Taihu adg(λ) is the most significant IOP, while aph(λ) is the least in terms of the IOP values and contributions to remote sensing reflectance. The highest bbp(λ) and adg(λ) occurred in the winter between 2017–2018, and the lowest bbp(λ) and adg(λ) occurred in the summer of 2014. In comparison, the seasonal and interannual variability of mean aph(λ) for Lake Taihu is less significant, even though enhanced seasonal and interannual variability can be found in some parts of Lake Taihu, such as in the northern Lake Taihu region.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2699 ◽  
Author(s):  
Jian Li ◽  
Liqiao Tian ◽  
Qingjun Song ◽  
Zhaohua Sun ◽  
Hongjing Yu ◽  
...  

Monitoring of water quality changes in highly dynamic inland lakes is frequently impeded by insufficient spatial and temporal coverage, for both field surveys and remote sensing methods. To track short-term variations of chlorophyll fluorescence and chlorophyll-a concentrations in Poyang Lake, the largest freshwater lake in China, high-frequency, in-situ, measurements were collected from two fixed stations. The K-mean clustering method was also applied to identify clusters with similar spatio-temporal variations, using remote sensing Chl-a data products from the MERIS satellite, taken from 2003 to 2012. Four lake area classes were obtained with distinct spatio-temporal patterns, two of which were selected for in situ measurement. Distinct daily periodic variations were observed, with peaks at approximately 3:00 PM and troughs at night or early morning. Short-term variations of chlorophyll fluorescence and Chl-a levels were revealed, with a maximum intra-diurnal ratio of 5.1 and inter-diurnal ratio of 7.4, respectively. Using geostatistical analysis, the temporal range of chlorophyll fluorescence and corresponding Chl-a variations was determined to be 9.6 h, which indicates that there is a temporal discrepancy between Chl-a variations and the sampling frequency of current satellite missions. An analysis of the optimal sampling strategies demonstrated that the influence of the sampling time on the mean Chl-a concentrations observed was higher than 25%, and the uncertainty of any single Terra/MODIS or Aqua/MODIS observation was approximately 15%. Therefore, sampling twice a day is essential to resolve Chl-a variations with a bias level of 10% or less. The results highlight short-term variations of critical water quality parameters in freshwater, and they help identify specific design requirements for geostationary earth observation missions, so that they can better address the challenges of monitoring complex coastal and inland environments around the world.


Author(s):  
Riza Yuliratno Setiawan ◽  
Eko Setyobudi ◽  
Anindya Wirasatriya ◽  
Andi Syahid Muttaqin ◽  
Lilik Maslukah

2019 ◽  
Vol 11 (19) ◽  
pp. 2257
Author(s):  
Ji-Yeon Baek ◽  
Young-Heon Jo ◽  
Wonkook Kim ◽  
Jong-Seok Lee ◽  
Dawoon Jung ◽  
...  

In this study, a low-altitude remote sensing (LARS) observation system was employed to observe a rapidly changing coastal environment-owed to the regular opening of the sluice gate of the Saemangeum seawall-off the west coast of South Korea. The LARS system uses an unmanned aerial vehicle (UAV), a multispectral camera, a global navigation satellite system (GNSS), and an inertial measurement unit (IMU) module to acquire geometry information. The UAV system can observe the coastal sea surface in two dimensions with high temporal (1 s−1) and spatial (20 cm) resolutions, which can compensate for the coarse spatial resolution of in-situ measurements and the low temporal resolution of satellite observations. Sky radiance, sea surface radiance, and irradiance were obtained using a multispectral camera attached to the LARS system, and the remote sensing reflectance (Rrs) was accordingly calculated. In addition, the hyperspectral radiometer and in-situ chlorophyll-a concentration (CHL) measurements were obtained from a research vessel to validate the Rrs observed using the multispectral camera. Multi-linear regression (MLR) was then applied to derive the relationship between Rrs of each wavelength observed using the multispectral sensor on the UAV and the in-situ CHL. As a result of applying MLR, the correlation and root mean square error (RMSE) between the remotely sensed and in-situ CHLs were 0.94 and ~0.8 μg L−1, respectively; these results show a higher correlation coefficient and lower RMSE than those of other, previous studies. The newly derived algorithm for the CHL estimation enables us to survey 2D CHL images at high temporal and spatial resolutions in extremely turbid coastal oceans.


2020 ◽  
Vol 32 ◽  
pp. 53-63
Author(s):  
Stefan Kazakov ◽  
Valko Biserkov ◽  
Luchezar Pehlivanov ◽  
Stoyan Nedkov

The aim of the study was to compare in situ and remote sensing data, in order to assess the applicability of satellite images in water quality monitoring of floodplain lakes. Two indicators of trophic status were compared: chlorophyll a and total suspended matter. Two lakes on Lower Danube floodplain were selected: Srebarna and Malak Preslavets. Data were obtained in July and August 2018. Sentinel 2 MSI L1c images were analyzed in SeNtinel Application Platform (SNAP), (v. 6.0). According to in situ data, Srebarna Lake indicated status of eutrophication, while Malak Preslavets experienced hypertrophic conditions. Satellite data indicated eutrophic conditions for both lakes. Comparing the results from in situ and satellite data, chlorophyll a showed higher correlation (r = 0.66) and comparable results. On the other hand, significantly overestimation of suspended matter according to satellite data were found, as well weaker correlation (r = 0.57) between both methods. Remote sensing i.e. Sentinel products are emerging as a powerful tool in environmental observation. Although weather conditions could have significant impact on environmental dynamic especially in floodplain lakes, combining and comparing of different methods could improve the preciseness of the methodology as well as assessment reliability.


Sign in / Sign up

Export Citation Format

Share Document