A Personalized Recommendation Approach Based on Content Similarity Calculation in Large-Scale Data

Author(s):  
Huigui Rong ◽  
Liang Gong ◽  
Zheng Qin ◽  
Yupeng Hu ◽  
Chunhua Hu
2019 ◽  
Vol 9 (15) ◽  
pp. 3141
Author(s):  
Li Bai ◽  
Mi Hu ◽  
Yunlong Ma ◽  
Min Liu

The last two decades have witnessed an explosive growth of e-commerce applications. Existing online recommendation systems for e-commerce applications, particularly group-buying applications, suffer from scalability and data sparsity problems when confronted with exponentially increasing large-scale data. This leads to a poor recommendation effect of traditional collaborative filtering (CF) methods in group-buying applications. In order to address this challenge, this paper proposes a hybrid two-phase recommendation (HTPR) method which consists of offline preparation and online recommendation, combining clustering and collaborative filtering techniques. The user-item category tendency matrix is constructed after clustering items, and then users are clustered to facilitate personalized recommendation where items are generated by collaborative filtering technology. In addition, a parallelized strategy was developed to optimize the recommendation process. Extensive experiments on a real-world dataset were conducted by comparing HTPR with other three recommendation methods: traditional CF, user-clustering based CF, and item-clustering based CF. The experimental results show that the proposed HTPR method is effective and can improve the accuracy of online recommendation systems for group-buying applications.


2009 ◽  
Vol 28 (11) ◽  
pp. 2737-2740
Author(s):  
Xiao ZHANG ◽  
Shan WANG ◽  
Na LIAN

2016 ◽  
Author(s):  
John W. Williams ◽  
◽  
Simon Goring ◽  
Eric Grimm ◽  
Jason McLachlan

2008 ◽  
Vol 9 (10) ◽  
pp. 1373-1381 ◽  
Author(s):  
Ding-yin Xia ◽  
Fei Wu ◽  
Xu-qing Zhang ◽  
Yue-ting Zhuang

2021 ◽  
Vol 77 (2) ◽  
pp. 98-108
Author(s):  
R. M. Churchill ◽  
C. S. Chang ◽  
J. Choi ◽  
J. Wong ◽  
S. Klasky ◽  
...  

Author(s):  
Krzysztof Jurczuk ◽  
Marcin Czajkowski ◽  
Marek Kretowski

AbstractThis paper concerns the evolutionary induction of decision trees (DT) for large-scale data. Such a global approach is one of the alternatives to the top-down inducers. It searches for the tree structure and tests simultaneously and thus gives improvements in the prediction and size of resulting classifiers in many situations. However, it is the population-based and iterative approach that can be too computationally demanding to apply for big data mining directly. The paper demonstrates that this barrier can be overcome by smart distributed/parallel processing. Moreover, we ask the question whether the global approach can truly compete with the greedy systems for large-scale data. For this purpose, we propose a novel multi-GPU approach. It incorporates the knowledge of global DT induction and evolutionary algorithm parallelization together with efficient utilization of memory and computing GPU’s resources. The searches for the tree structure and tests are performed simultaneously on a CPU, while the fitness calculations are delegated to GPUs. Data-parallel decomposition strategy and CUDA framework are applied. Experimental validation is performed on both artificial and real-life datasets. In both cases, the obtained acceleration is very satisfactory. The solution is able to process even billions of instances in a few hours on a single workstation equipped with 4 GPUs. The impact of data characteristics (size and dimension) on convergence and speedup of the evolutionary search is also shown. When the number of GPUs grows, nearly linear scalability is observed what suggests that data size boundaries for evolutionary DT mining are fading.


Sign in / Sign up

Export Citation Format

Share Document