scholarly journals More on the Metric Projection onto a Closed Convex Set in a Hilbert Space

Author(s):  
Biagio Ricceri
2005 ◽  
Vol 2005 (4) ◽  
pp. 423-436
Author(s):  
F. S. de Blasi ◽  
N. V. Zhivkov

For a nonempty separable convex subsetXof a Hilbert spaceℍ(Ω), it is typical (in the sense of Baire category) that a bounded closed convex setC⊂ℍ(Ω)defines anm-valued metric antiprojection (farthest point mapping) at the points of a dense subset ofX, whenevermis a positive integer such thatm≤dimX+1.


2011 ◽  
Vol 54 (4) ◽  
pp. 726-738
Author(s):  
M. I. Ostrovskii

AbstractLet BY denote the unit ball of a normed linear space Y. A symmetric, bounded, closed, convex set A in a finite dimensional normed linear space X is called a sufficient enlargement for X if, for an arbitrary isometric embedding of X into a Banach space Y, there exists a linear projection P: Y → X such that P(BY ) ⊂ A. Each finite dimensional normed space has a minimal-volume sufficient enlargement that is a parallelepiped; some spaces have “exotic” minimal-volume sufficient enlargements. The main result of the paper is a characterization of spaces having “exotic” minimal-volume sufficient enlargements in terms of Auerbach bases.


2004 ◽  
Vol 2 (1) ◽  
pp. 71-95 ◽  
Author(s):  
George Isac ◽  
Monica G. Cojocaru

In the first part of this paper we present a representation theorem for the directional derivative of the metric projection operator in an arbitrary Hilbert space. As a consequence of the representation theorem, we present in the second part the development of the theory of projected dynamical systems in infinite dimensional Hilbert space. We show that this development is possible if we use the viable solutions of differential inclusions. We use also pseudomonotone operators.


1991 ◽  
Vol 109 (2) ◽  
pp. 405-417 ◽  
Author(s):  
C. J. Amick ◽  
J. F. Toland

First we consider an elementary though delicate question about the trajectory in ℝn of a particle in a conservative field of force whose dynamics are governed by the equationHere the potential function V is supposed to have Lipschitz continuous first derivative at every point of ℝn. This is a natural assumption which ensures that the initial-value problem is well-posed. We suppose also that there is a closed convex set C with non-empty interior C° such that V ≥ 0 in C and V = 0 on the boundary ∂C of C. It is noteworthy that we make no assumptions about the degeneracy (or otherwise) of V on ∂C (i.e. whether ∇V = 0 on ∂C, or not); thus ∂C is a Lipschitz boundary because of its convexity but not necessarily any smoother in general. We remark also that there are no convexity assumptions about V and nothing is known about the behaviour of V outside C.


2021 ◽  
Vol 65 (3) ◽  
pp. 5-16
Author(s):  
Abbas Ja’afaru Badakaya ◽  

This paper concerns with the study of two pursuit differential game problems of many pursuers and many evaders on a nonempty closed convex subset of R^n. Throughout the period of the games, players must stay within the given closed convex set. Players’ laws of motion are defined by certain first order differential equations. Control functions of the pursuers and evaders are subject to geometric constraints. Pursuit is said to be completed if the geometric position of each of the evader coincides with that of a pursuer. We proved two theorems each of which is solution to a problem. Sufficient conditions for the completion of pursuit are provided in each of the theorems. Moreover, we constructed strategies of the pursuers that ensure completion of pursuit.


1961 ◽  
Vol 13 ◽  
pp. 177-178 ◽  
Author(s):  
A. M. Macbeath

Let ∧ be a lattice in Euclidean n-space, that is, ∧ is a set of points ε1a1+ … + εnanwherea1… ,anare linearly independent vectors and the ε run over all integers. Letμdenote the Lebesgue measure. A closed convex setFis called afundamental regionfor ∧ if the setsF+x (x∈∧) cover the whole space without overlapping; that is, ifF0is the interior ofF,and 0 ≠x∈ ∧, thenF0∩(F0+x) =ϕ.


1967 ◽  
Vol 19 ◽  
pp. 312-320 ◽  
Author(s):  
Frank Forelli

Let R be an open Riemann surface. ƒ belongs to H1(R) if ƒ is holomorphic on R and if the subharmonic function |ƒ| has a harmonie majorant on R. Let p be in R and define ||ƒ|| to be the value at p of the least harmonic majorant of |ƒ|. ||ƒ|| is a norm on the linear space H1(R), and with this norm H1(R) is a Banach space (7). The unit ball of H1(R) is the closed convex set of all ƒ in H1(R) with ||ƒ|| ⩽ 1. Problem: What are the extreme points of the unit ball of H1(R)? de Leeuw and Rudin have given a complete solution to this problem where R is the open unit disk (1).


Sign in / Sign up

Export Citation Format

Share Document