Long-Term Comparison of Lidar Derived Aerosol Optical Depth Between Two Operational Algorithms and Sun Photometer Measurements for Thessaloniki, Greece

Author(s):  
K. Voudouri ◽  
N. Siomos ◽  
E. Giannakaki ◽  
V. Amiridis ◽  
G. D’Amico ◽  
...  
2016 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. D. García ◽  
O. E. García ◽  
E. Cuevas ◽  
V. E. Cachorro ◽  
A. Barreto ◽  
...  

Abstract. This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations  >  85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.


2013 ◽  
Vol 6 (10) ◽  
pp. 2659-2669 ◽  
Author(s):  
A. Bayat ◽  
H. R. Khalesifard ◽  
A. Masoumi

Abstract. The polarized phase function of atmospheric aerosols has been investigated for the atmosphere of Zanjan, a city in northwest Iran. To do this, aerosol optical depth, Ångström exponent, single-scattering albedo, and polarized phase function have been retrieved from the measurements of a Cimel CE 318-2 polarized sun-photometer from February 2010 to December 2012. The results show that the maximum value of aerosol polarized phase function as well as the polarized phase function retrieved for a specific scattering angle (i.e., 60°) are strongly correlated (R = 0.95 and 0.95, respectively) with the Ångström exponent. The latter has a meaningful variation with respect to the changes in the complex refractive index of the atmospheric aerosols. Furthermore the polarized phase function shows a moderate negative correlation with respect to the atmospheric aerosol optical depth and single-scattering albedo (R = −0.76 and −0.33, respectively). Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles of the region – a populated city in the semi-arid area and surrounded by some dust sources of the Earth's dust belt.


2007 ◽  
Vol 7 (8) ◽  
pp. 2091-2101 ◽  
Author(s):  
S. Kazadzis ◽  
A. Bais ◽  
V. Amiridis ◽  
D. Balis ◽  
C. Meleti ◽  
...  

Abstract. Spectral measurements of the aerosol optical depth (AOD) and the Ångström coefficient were conducted at Thessaloniki, Greece (40.5° N, 22.9° E) between January 1997 and December 2005 with a Brewer MKIII double-monochromator spectroradiometer. The dataset was compared with collocated measurements of a second spectroradiometer (Brewer MKII) and a CIMEL sun-photometer, showing correlations of 0.93 and 0.98, respectively. A seasonal variation of the AOD was observed at Thessaloniki, with AOD values at 340 nm of 0.52 and 0.28 for August and December respectively. Back trajectories of air masses for up to 4 days were used to assess the influence of long-range transport from various regions to the aerosol load over Thessaloniki. It is shown that part of the observed seasonality can be attributed to air masses with high AOD originating from North-Eastern and Eastern directions during summertime. The analysis of the long-term record (9 years) of AOD showed a downward tendency. A similar decreasing tendency was found in the record of the PM$_{10}$ aerosol measurements, which are conducted near the surface at 4 air-quality monitoring stations in the area of the city of Thessaloniki.


2019 ◽  
Vol 10 (2) ◽  
pp. 608-620 ◽  
Author(s):  
Shantikumar S. Ningombam ◽  
E.J.L. Larson ◽  
U.C. Dumka ◽  
Victor Estellés ◽  
M. Campanelli ◽  
...  

Author(s):  
Chunlin Jin ◽  
Yong Xue ◽  
Xingxing Jiang ◽  
Rui Bai ◽  
Yuxin Sun ◽  
...  

2019 ◽  
Vol 12 (2) ◽  
pp. 921-934
Author(s):  
Nilton E. Rosário ◽  
Thamara Sauini ◽  
Theotonio Pauliquevis ◽  
Henrique M. J. Barbosa ◽  
Marcia A. Yamasoe ◽  
...  

Abstract. Extraterrestrial spectral response calibration of a multi-filter rotating shadow band radiometer (MFRSR) under pristine Amazonian Forest atmosphere conditions was performed using the Langley plot method. The MFRSR is installed in central Amazonia as part of a long-term monitoring site, which was used in the context of the GoAmazon2014/5 experiment. It has been operating continuously since 2011 without regular extraterrestrial calibration, preventing its application to accurate monitoring of aerosol particles. Once calibrated, the MFRSR measurements were applied to retrieve aerosol particle columnar optical properties, specifically aerosol optical depth (AODλ) and Ångström exponent (AE), which were evaluated against retrievals from a collocated Cimel Sun photometer belonging to the AErosol RObotic NETwork (AERONET). Results obtained revealed that pristine Amazonian conditions are able to provide MFRSR extraterrestrial spectral response with relative uncertainty lower than 1.0 % in visible channels. The worst estimate (air mass =1) for absolute uncertainty in AODλ retrieval varied from ≈0.02 to ≈0.03, depending on the assumption regarding uncertainty for MFRSR direct normal irradiance measured at the surface. The obtained root mean square error (RMSE ≈0.025) from the evaluation of MFRSR retrievals against AERONET AODλ was, in general, lower than estimated MFRSR AODλ uncertainty, and close to the uncertainty of AERONET field Sun photometers (≈0.02).


2019 ◽  
Vol 124 (6) ◽  
pp. 3464-3475
Author(s):  
K. M. Markowicz ◽  
O. Zawadzka ◽  
M. Posyniak ◽  
J. Uscka‐Kowalkowska

Sign in / Sign up

Export Citation Format

Share Document