band radiometer
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 44)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Khalid Al-Ghifari ◽  
Susanna Nurdjaman ◽  
Brian Dika Praba P Cahya ◽  
Syarifudin Nur

Coastal conditions are closely related to the conditions of rivers and estuaries in the region and changes in the river condition caused by human activities will affect water turbidity. Rivers discharge which carries suspended materials and pollution to the sea have an important role in affecting Cirebon Water turbidity. The aim of this study is to estimate the turbidity using a smartphone application called HydroColor. The study data are obtained in September 2020. This study used Horiba U-10 and HydroColor as a method used to obtain the turbidity data of Cirebon Water. HydroColor is an advancement of technology that can be used to estimate water turbidity. Estimation method using HydroColor is a low-cost method because it only requires a gray card and a HydroColor that is available for iOS and Android for free. HydroColor uses a camera on a smartphone as a 3-band radiometer and produces reflectance values measured by HydroColor. Horiba U-10 data is used as in-situ data and is used to compared to HydroColor data to obtain a correlation between the two data. The results show that the correlation of HydroColor data with in-situ data is 0.91 and HydroColor tends to produce lower turbidity values than in-situ.  


Author(s):  
M. Barrée ◽  
A. Mialon ◽  
T. Pellarin ◽  
M. Parrens ◽  
R. Biron ◽  
...  

2021 ◽  
Author(s):  
Matteo Alparone ◽  
Ferdinando Nunziata ◽  
Claudio Estatico ◽  
Maurizio Migliaccio
Keyword(s):  
L Band ◽  

2021 ◽  
Vol 13 (16) ◽  
pp. 3230
Author(s):  
Tianshu Guo ◽  
Xi Guo ◽  
Cheng Zhang ◽  
Donghao Han ◽  
Lijie Niu ◽  
...  

Microwave Imager Combined Active and Passive (MICAP), which is a package of active and passive microwave instruments including L/C/K-band radiometers and L-band scatterometer, has been approved to be taken onbord the Chinese Ocean Salinity Mission. The L-band one-dimensional synthetic aperture radiometer (L-Rad) is the key part of MICAP to measure sea surface salinity (SSS). Since radio frequency interference (RFI) is reported as a serious threat to L-band radiometry, the RFI detection and mitigation techniques must be carefully designed before launch. However, these techniques need to be developed based on the knowledge of how RFI affects complex correlation, visibility function, and reconstructed brightness temperature. This paper presents a time-domain signal modeling method for the simulation of interferometric measurement under RFI’s presences, and a simulation system for L-Rad is established accordingly. Several RFI cases are simulated with different RFI types, parameters, and positions; and the RFI characteristics upon L-Rad’s measurement are discussed. The proposed simulation system will be further dedicated to the design of RFI processing strategy onboard MICAP.


Author(s):  
T. Mengual ◽  
P. Villalba ◽  
M. A. Piqueras ◽  
E. Rico ◽  
J. I. Ramírez ◽  
...  
Keyword(s):  
L Band ◽  

2021 ◽  
Author(s):  
Jacqueline Boutin ◽  
Jean-Luc Vergely ◽  
Emmanuel Dinnat ◽  
Philippe Waldteufel ◽  
Francesco D'Amico ◽  
...  

<p>We derived a new parametrisation for the dielectric constant of the ocean (Boutin et al. 2020). Earlier studies have pointed out systematic differences between Sea Surface Salinity retrieved from L-band radiometric measurements and measured in situ, that depend on Sea Surface Temperature (SST). We investigate how to cope with these differences given existing physically based radiative transfer models. In order to study differences coming from seawater dielectric constant parametrization, we consider the model of Somaraju and Trumpf (2006) (ST) which is built on sound physical bases and close to a single relaxation term Debye equation. While ST model uses fewer empirically adjusted parameters than other dielectric constant models currently used in salinity retrievals, ST dielectric constants are found close to those obtained using the Meissner and Wentz (2012) (MW) model. The ST parametrization is then slightly modified in order to achieve a better fit with seawater dielectric constant inferred from SMOS data. Upgraded dielectric constant model is intermediate between KS and MW models. Systematic differences between SMOS and in situ salinity are reduced to less than +/-0.2 above 0°C and within +/-0.05 between 7 and 28°C. Aquarius salinity becomes closer to in situ salinity, and within +/-0.1. The order of magnitude of remaining differences is very similar to the one achieved with the Aquarius version 5 empirical adjustment of wind model SST dependency. The upgraded parametrization is recommended for use in processing the SMOS data. </p><p>The rationale for this new parametrisation, results obtained with this new parametrisation in recent SMOS reprocessings and comparisons with other parametrisations will be discussed.</p><p>Reference:</p><p>Boutin, J.,et al. (2020), Correcting Sea Surface Temperature Spurious Effects in Salinity Retrieved From Spaceborne L-Band Radiometer Measurements, IEEE TGRSS, doi:10.1109/tgrs.2020.3030488.</p>


2021 ◽  
Author(s):  
Xavier Perrot ◽  
Jacqueline Boutin ◽  
Jean Luc Vergely ◽  
Frédéric Rouffi ◽  
Adrien Martin ◽  
...  

<p>This study is performed in the frame of the European Space Agency (ESA) Climate Change Initiative (CCI+) for Sea Surface Salinity (SSS), which aims at generating global SSS fields from all available satellite L-band radiometer measurements over the longest possible period with a great stability. By combining SSS from the Soil Moisture and Ocean Salinity, SMOS, Aquarius and the Soil Moisture Active Passive, SMAP missions, CCI+SSS fields (Boutin et al. 2020) are the only one to provide a 10 year time series of satellite salinity with such quality: global rms difference of weekly 25x25km<span>2 </span>CCI+SSS with respect to in situ Argo SSS of 0.17 pss, correlation coefficient of 0.97 (see https://pimep.ifremer.fr/diffusion/analyses/mdb-database/GO/cci-l4-esa-merged-oi-v2.31-7dr/argo/report/pimep-mdb-report_GO_cci-l4-esa-merged-oi-v2.31-7dr_argo_20201215.pdf). Nevertheless, we found that some systematic biases remained. In this presentation, we will show how they will be reduced in the next CCI+SSS version.</p><p>The key satellite mission ensuring the longest time period, since 2010, at global scale, is SMOS. We implemented a re-processing of the whole SMOS dataset by changing some key points. Firstly we replace the Klein and Swift (1977) dielectric constant parametrization by the new Boutin et al. (2020) one. Secondly we change the reference dataset used to perform a vicarious calibration over the south east Pacific Ocean (the so-called Ocean Target Transformation), by using Argo interpolated fields (ISAS, Gaillard et al. 2016) contemporaneous to the satellite measurements instead of the World Ocean Atlas climatology. And thirdly the auxiliary data (wind, SST, atmospheric parameters) used as priors in the retrieval scheme, which come in the original SMOS processing from the ECMWF forecast model were replaced by ERA5 reanalysis.</p><p>Our results are showing a quantitative improvement in the stability of the SMOS CCI+SSS with respect to in situ measurements for all the period as well as a decrease of the spread of the difference between SMOS and in situ salinity measurements.</p><p>Bibliography:</p><p>J. Boutin et al. (2020), Correcting Sea Surface Temperature Spurious Effects in Salinity Retrieved From Spaceborne L-Band Radiometer Measurements, IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2020.3030488.</p><p>F. Gaillard et al. (2016), In Situ–Based Reanalysis of the Global Ocean Temperature and Salinity with ISAS: Variability of the Heat Content and Steric Height, Journal of Climate, vol. 29, no. 4, pp. 1305-1323, doi: 10.1175/JCLI-D-15-0028.1.</p><p>L. Klein and C. Swift (1977), An improved model for the dielectric constant of sea water at microwave frequencies, IEEE Transactions on Antennas and Propagation, vol. 25, no. 1, pp. <span>104-111, </span>doi: 10.1109/JOE.1977.1145319.</p><p>Data reference:</p><p>J. Boutin et al. (2020): ESA Sea Surface Salinity Climate Change Initiative (Sea_Surface_Salinity_cci): Weekly sea surface salinity product, v2.31, for 2010 to 2019. Centre for Environmental Data Analysis. https://catalogue.ceda.ac.uk/uuid/eacb7580e1b54afeaabb0fd2b0a53828</p>


Author(s):  
Xiaojun Bi ◽  
Zhaoming Feng ◽  
Shiming Guan ◽  
Zilan Cao ◽  
Yufan Mei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document