scholarly journals Integrating Open Data on Cancer in Support to Tumor Growth Analysis

Author(s):  
Fleur Jeanquartier ◽  
Claire Jean-Quartier ◽  
Tobias Schreck ◽  
David Cemernek ◽  
Andreas Holzinger
BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Louie Semaan ◽  
Navneet Mander ◽  
Michael L. Cher ◽  
Sreenivasa R. Chinni

Abstract Background Castrate Resistant Prostate Cancer (CRPC) is an advanced disease resistant to systemic traditional medical or surgical castration, and resistance is primarily attributed to reactivation of AR through multiple mechanisms. TMPRSS2-ERG fusions have been shown to regulate AR signaling, interfere with pro-differentiation functions, and mediate oncogenic signaling. We have recently shown that ERG regulates intra-tumoral androgen synthesis and thereby facilitates AR function in prostate cancer cells. We hypothesize that enzalutamide treatment will be more effective in cells/tumors with TMPRSS2-ERG translocations because these tumors have increased AR signaling. Methods ERG knockdown was performed with VCaP cells using lentiviral infections to generate VCaP ERGshRNA cells and control VCaP scr cells with scrambled shRNA. Cell-growth analysis was performed to determine the effect of enzalutamide. Reverse transcription, quantitative real-time PCR (RT-qPCR) was used to determine the expression of AR responsive genes. Luciferase tagged VCaP scr and shRNA infected cells were used in an intra-tibial animal model for bone tumor growth analysis and enzalutamide treatment used to inhibit AR signaling in bone tumors. Western blotting analyzed VCaP bone tumor samples for ERG, AR, AKR1C3 and HSD3B1 and HSD3B2 expression. Results Enzalutamide inhibited the growth of VCaP scr cells more effectively than shERG cells. Analysis of AR responsive genes shows that Enzalutamide treatment at 5 micromolar concentration inhibited by 85–90% in VCaP Scr cells whereas these genes were inhibited to a lesser extent in VCaP shERG cells. Enzalutamide treatment resulted in severe growth inhibition in VCaP scr shRNA cells compared to VCaP shERG cells. In bone tumor growth experiment, VCaP ERG shRNA cells grew at slower than VCaP scr shRNA cells. Androgen biosynthetic enzyme expression is lower VCaP shERG bone tumors compared to VCaP scr shRNA bone tumors and enzalutamide inhibited the enzyme expression in both types of tumors. Conclusions These data suggest that ERG transcription factor regulates androgen biosynthetic enzyme expression that enzalutamide treatment is more effective against VCaP bone tumors with an intact ERG expression, and that knocking down ERG in VCaP cells leads to a lesser response to enzalutamide therapy. Thus, ERG expression status in tumors could help stratify patients for enzalutamide therapy.


1980 ◽  
Vol 13 (5) ◽  
pp. 437-445 ◽  
Author(s):  
Edwin B. Cox ◽  
Max A. Woodbury ◽  
Lawrence E. Myers

2016 ◽  
Vol 51 (2) ◽  
pp. 69-78 ◽  
Author(s):  
Amir Kershenovich ◽  
Zmira Silman ◽  
David de Rungs ◽  
Korgun Koral ◽  
Lynn Gargan ◽  
...  

2005 ◽  
Vol 173 (4S) ◽  
pp. 178-179
Author(s):  
Tetsuo Ogushi ◽  
Takahashi Satoru ◽  
Takumi Takeuchi ◽  
Tetsuya Fujimura ◽  
Tomohiko Urano ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 263-263
Author(s):  
Christoph Kündig ◽  
Sylvain M. Cloutier ◽  
Steve Aellen ◽  
Loyse M. Felber ◽  
Jair R. Chagas ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 143-143
Author(s):  
Aubie Shaw ◽  
Jerry Gipp ◽  
Wade Bushman

Sign in / Sign up

Export Citation Format

Share Document