Cell Wall Development in an Elongating Internode of Setaria

Author(s):  
Anthony P. Martin ◽  
Christopher W. Brown ◽  
Duc Q. Nguyen ◽  
William M. Palmer ◽  
Robert T. Furbank ◽  
...  
2010 ◽  
pp. no-no ◽  
Author(s):  
Qiao Zhao ◽  
Lina Gallego-Giraldo ◽  
Huanzhong Wang ◽  
Yining Zeng ◽  
Shi-You Ding ◽  
...  

Botany ◽  
2008 ◽  
Vol 86 (4) ◽  
pp. 385-397 ◽  
Author(s):  
Haley D.M. Wyatt ◽  
Neil W. Ashton ◽  
Tanya E.S. Dahms

The moss Physcomitrella patens (Hedw.) Bruch & Schimp. in B.S.G. serves as a nonvascular plant model system suitable for studying many plant developmental phenomena. The tip-growing filamentous protonemal stage of its life cycle exhibits polarized growth and various tropic responses. Conventional staining and light microscopy (LM) were used to provide the first direct evidence that protonemal cells of P. patens lack a cuticle. Atomic force microscopy (ATM) images reveal detailed surface structures identified by scanning electron microscopy (SEM). The cell wall ultrastructure is characterized by rounded protrusions that are uniformly distributed along each caulonemal filament, and longer fibrillar structures, which are disorganized at the apex, but become oriented in longitudinal arrays parallel to the growth axis in more proximal regions of caulonemal apical cells. The subapical cells are characterized by a polylamellated texture. There was no difference in gross surface ultrastructure between light-grown and dark-grown filaments, but the dimensions of the rounded protrusions at the apices of caulonemata cultured in the light and in darkness were significantly different. The convex and concave cell wall surfaces of a curved, gravitropically responding dark-grown caulonema appear structurally different. This investigation is the first to use AFM to probe the cell wall ultrastructure of a bryophyte. The data further elaborate a simple model of cell wall development in the caulonemata of P. patens that was proposed for other tip-growing filamentous plants.


1983 ◽  
Vol 20 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Roberto Jona ◽  
Rosalina Vallania ◽  
Claudio Rosa

2002 ◽  
Vol 80 (10) ◽  
pp. 1029-1033 ◽  
Author(s):  
W Gindl ◽  
H S Gupta ◽  
C Grünwald

The lignin content and the mechanical properties of lignifying and fully lignified spruce tracheid secondary cell walls were determined using UV microscopy and nano-indentation, respectively. The average lignin content of developing tracheids was 0.10 g·g–1, as compared with 0.21 g·g–1 in mature tracheids. The modulus of elasticity of developing cells was on average 22% lower than the one measured in mature, fully lignified cells. For the longitudinal hardness, a larger difference of 26% was observed. As lignifying cells in the cambial zone are undergoing cell wall development, spaces in the cellulose–hemicellulose structure are filled with lignin and the density of the cell wall is believed to increase. It is therefore suggested that the observed difference in modulus of elasticity between developing and fully lignified cell walls is due to the filling of spaces with lignin and an increase of the packing density of the cell wall during lignification. Although remarkably less stiff than the composite polysaccharide structure in the secondary cell wall, lignin may be considered equally hard. Therefore, the observed increase in lignin content may contribute directly to the measured increase of hardness.Key words: secondary cell wall, hardness, lignin, modulus of elasticity, wood formation.


2013 ◽  
Vol 117 (3) ◽  
pp. 163-172 ◽  
Author(s):  
Laura J. Grenville-Briggs ◽  
Neil R. Horner ◽  
Andrew J. Phillips ◽  
Gordon W. Beakes ◽  
Pieter van West

IAWA Journal ◽  
1981 ◽  
Vol 2 (4) ◽  
pp. 151-162 ◽  
Author(s):  
A.M. Catesson ◽  
J.C. Roland

Cytochemical techniques and mild extractions were used at the electron microscope level for the study of the cambial zone of several hardwoods and one softwood. The maturation processes of the primary radial and tangential cell walls involve a progressive disappearance of their initial heterogeneity. The buttress-like zone joining these walls appears to be the starting point for a characteristic sequence of changes and intra-wall rearrangement. Topochemical results have suggested an alternative to the 'emboxing concept' of cell wall development.


Sign in / Sign up

Export Citation Format

Share Document