cotton fibers
Recently Published Documents


TOTAL DOCUMENTS

1007
(FIVE YEARS 189)

H-INDEX

49
(FIVE YEARS 8)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 125
Author(s):  
Mattia Bartoli ◽  
Daniele Torsello ◽  
Erik Piatti ◽  
Mauro Giorcelli ◽  
Amelia Carolina Sparavigna ◽  
...  

The development of responsive composite materials is among the most interesting challenges in contemporary material science and technology. Nevertheless, the use of highly expensive nanostructured fillers has slowed down the spread of these smart materials in several key productive sectors. Here, we propose a new piezoresistive PVA composite containing a cheap, conductive, waste-derived, cotton biochar. We evaluated the electromagnetic properties of the composites under both AC and DC regimes and as a function of applied pressure, showing promisingly high conductivity values by using over 20 wt.% filler loading. We also measured the conductivity of the waste cotton biochar from 20 K up to 350 K observing, for the first time, hopping charge transport in biochar materials.


Cellulose ◽  
2022 ◽  
Author(s):  
Yuanxiang Xiao ◽  
Guokang Shen ◽  
Weishi Zheng ◽  
Jiajia Fu ◽  
Feiya Fu ◽  
...  

2022 ◽  
pp. 119040
Author(s):  
Ashlee Aiello ◽  
Tyler Cosby ◽  
Julia McFarland ◽  
David P. Durkin ◽  
Paul C. Trulove

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 6
Author(s):  
Xueyao Wang ◽  
Dongmei Yang ◽  
Xianhui An ◽  
Xueren Qian

Phytic acid doped polypyrrole (PPy) as a mediating layer was in-situ coated on cotton fibers (CFs) to promote the growth of Prussian blue (PB) and construct the PB/PPy@CFs composite. The results showed that the proper amounts of PA doped PPy in-situ generated significantly promoted the growth of PB on CFs, the PB deposition ratio increased from 12.29% (PB@CFs) to 32.4% (PB/PPy@CFs), and the growth of PB on PPy@CFs could be completed in 4 h. Scanning electron microscopy (SEM) showed that the PB particles with perfect nano cubic structure were formed in the composite. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) showed that both PB and PPy were successfully deposited on CFs. The PB/PPy@CFs composite had excellent light absorption, hydrophilicity, wettability, and photothermal property, and the surface could be heated up to 81.5 °C under one sun illumination. The PB/PPy@CFs composite as a photothermal conversion material was used for solar-driven interfacial water evaporation, the water evaporation rate was 1.36 kg·m−2·h−1 at the optical concentration of 1 kW·m2, and the corresponding photothermal conversion efficiency increased from 81.69% (PB@CFs) to 90.96% (PB/PPy@CFs).


2021 ◽  
Author(s):  
Linhua Li ◽  
Baojie Dou ◽  
Jianwu Lan ◽  
Jiaojiao Shang ◽  
Yafang Wang ◽  
...  

Abstract Adsorbents with superior adsorption capacity and facile recyclability are viewed as promising materials for dye wastewater treatment. In this work, a novel sulfonate decorated cotton fiber as a biodegradable and recyclable adsorbent was fabricated for highly efficient removal of cationic dyes. Herein, the poly(sodium p-styrenesulfonate-co-N-methylol acrylamide) (P(SSNa-co-NMAM)) with SSNa units as adsorption sites and NMAM units as thermal-crosslinking points was synthesized for modification of cotton fibers in a large scale at high temperature (160 oC). The various characterization investigations confirmed the successful construction of the P(SSNa-co-NMAM) coated cotton fibers (PCF). As expected, the as-obtained adsorbent presented outstanding adsorption performance toward cationic dyes in the both static and dynamic states, even in the synthetic effluent. The adsorption processes of cationic dyes onto the PCF were well fitted by the Langmuir isotherm model and Pseudo-second-order kinetics, respectively. The thermodynamics study showed that the adsorption reaction of the cationic dyes onto PCF was a spontaneous and endothermic process. The maximum adsorption capacities of PCF toward MEB, RhB and MG were 3976.10, 2879.80 and 3071.55 mg/g, respectively. The responsible adsorption of dyes ontothe PCF was electrostatic interaction. Moreover, the adsorption capacity of PCF toward cationic dyes was slight influenced by pH value of solution, because of the stable feature of sulfonate moiety in acid and alkali. In addition, the as-prepared PCF exhibited satisfactory recyclability and reusability. Given the aforementioned results, the as-obtained PCF is a promising adsorbent with great potential for practical application in the dye-contaminated wastewater remediation.


e-Polymers ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 30-37
Author(s):  
Wei Cao ◽  
Qiuying Li ◽  
Chifei Wu

Abstract Large amounts of textile waste are generated every year and disposed of through landfill or incineration, leading to numerous environmental and social issues. In this study, waste hybrid polyethylene terephthalate (PET)/cotton fibers were used directly to reinforce high density polyethylene (HDPE) to prepare composites. In order to give full play to the fiber’s reinforcing characteristics, the PET/cotton fibers were further modified with the modifier using a novel synthesized tetraethyl orthosilicate/3-aminopropyl triethoxysilane (KH550)/polyethylene (PE)-g-MAH (MPE) hybrid (TMPE). Fourier transform infrared and scanning electron microscopy (SEM) confirmed that the TMPE was successfully coated on the surface of fibers. Furthermore, compared with the original and the MPE-modified fibers, the thermal stability of TMPE-modified fibers was significantly increased. SEM and mechanical test indicated that the compatibility of the modified fibers with HDPE had been significantly improved, which led to the improvement of mechanical properties. Compared with the original and MPE-modified fibers-reinforced HDPE composites, the bending strength, bending modulus, and impact strength of TMPE-modified fiber-reinforced HDPE composites were improved obviously by 31.7%, 25.7%, and 89.1%, respectively.


2021 ◽  
Vol 44 ◽  
pp. 102334
Author(s):  
Shaolin Yang ◽  
Jinze Li ◽  
Na Yang ◽  
Simiao Sha ◽  
Cheng Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document