Reduction Behavior of Assmang and Comilog ore in the SiMn Process

Author(s):  
Pyunghwa Peace Kim ◽  
Joakim Holtan ◽  
Merete Tangstad
Keyword(s):  
2019 ◽  
Vol 29 (10) ◽  
pp. 592-602
Author(s):  
Woo-Gwang Jung ◽  
◽  
Sakib Tanvir Hossain ◽  
Jong-Ho Kim ◽  
Young-Chul Chang
Keyword(s):  

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 740
Author(s):  
Sang Gyun Shin ◽  
Wan Ho Kim ◽  
Dong Joon Min

The effects of Al2O3 content on the morphology and reducibility of sinter were respectively investigated using confocal laser microscopy and thermogravimetric analysis at 1273 K under CO gas. To understand the effects of the sintering process, separate samples were prepared via the equilibrium and metastable reaction routes. In the equilibrium samples, the addition of Al2O3 led to the formation of the silico-ferrite of calcium and alumino phase and a decrease in the reduction rate due to the lowered reactivity of iron oxide. In contrast, in the metastable samples, the reduction rate increased after the addition of 2.5 mass% Al2O3. The addition of Al2O3 decreased the fraction of the liquid phase and increased the fraction of pores in the sample. As a result, the reduction rate is proportional to the Al2O3 content owing to the changes in the sinter morphology. In determining the reduction rate of the sinter, the influence of the microstructure on the diffusion of the reducing gas is more significant than that of the interfacial chemical reaction due to the formation of the SFCA phase. The microstructure changes of the sinter with the addition of Al2O3 and the corresponding reduction behaviors are further discussed.


Author(s):  
Jinglong Liang ◽  
Jing Wang ◽  
Hui Li ◽  
Chenxiao Li ◽  
Hongyan Yan ◽  
...  

AbstractMassive deployment of lithium-ion battery inevitably causes a large amount of solid waste. To be sustainably implemented, technologies capable of reducing environmental impacts and recovering resources from spent lithium-ion battery have been an urgent task. The electrochemical reduction of LiNiO2 to metallic nickel has been reported, which is a typical cathode material of lithium-ion battery. In this paper, the electrochemical reduction behavior of LiNiO2 is studied at 750 °C in the eutectic NaCl-CaCl2 molten salt, and the constant cell voltage electrolysis of LiNiO2 is carried out. The results show that Ni(III) is reduced to metallic nickel by a two-step process, Ni(III) → Ni(II) → Ni, which is quasi-reversible controlled by diffusion and electron transfer. After electrolysis for 6 h at 1.4 V, the surface of LiNiO2 cathode is reduced to metallic nickel, with NiO and a small amount of Li0.4Ni1.6O2 detected inside the partially reduced cathode. After prolonging the electrolysis time to 12 h, LiNiO2 is fully electroreduced to metallic nickel, achieving a high current efficiency of 98.60%. The present work highlights that molten salt electrolysis could be an effective protocol for reclamation of spent lithium-ion battery.


2017 ◽  
Vol 66 (5) ◽  
pp. 368-377 ◽  
Author(s):  
Robin Stevens ◽  
Stacia Gilliard-Matthews ◽  
Jamie Dunaev ◽  
Abigail Todhunter-Reid ◽  
Bridgette Brawner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document