A Feature Selection Algorithm for Anomaly Detection in Grid Environment Using k-fold Cross Validation Technique

Author(s):  
Dahliyusmanto ◽  
Tutut Herawan ◽  
Syefrida Yulina ◽  
Abdul Hanan Abdullah
2006 ◽  
Vol 15 (06) ◽  
pp. 893-915 ◽  
Author(s):  
JIANG LI ◽  
JIANHUA YAO ◽  
RONALD M. SUMMERS ◽  
NICHOLAS PETRICK ◽  
MICHAEL T. MANRY ◽  
...  

We present an efficient feature selection algorithm for computer aided detection (CAD) computed tomographic (CT) colonography. The algorithm (1) determines an appropriate piecewise linear network (PLN) model by cross validation, (2) applies the orthonormal least square (OLS) procedure to the PLN model utilizing a Modified Schmidt procedure, and (3) uses a floating search algorithm to select features that minimize the output variance. The undesirable "nesting effect" is prevented by the floating search approach, and the piecewise linear OLS procedure makes this algorithm very computationally efficient because the Modified Schmidt procedure only requires one data pass during the whole searching process. The selected features are compared to those obtained by other methods, through cross validation with support vector machines (SVMs).


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1238
Author(s):  
Supanat Chamchuen ◽  
Apirat Siritaratiwat ◽  
Pradit Fuangfoo ◽  
Puripong Suthisopapan ◽  
Pirat Khunkitti

Power quality disturbance (PQD) is an important issue in electrical distribution systems that needs to be detected promptly and identified to prevent the degradation of system reliability. This work proposes a PQD classification using a novel algorithm, comprised of the artificial bee colony (ABC) and the particle swarm optimization (PSO) algorithms, called “adaptive ABC-PSO” as the feature selection algorithm. The proposed adaptive technique is applied to a combination of ABC and PSO algorithms, and then used as the feature selection algorithm. A discrete wavelet transform is used as the feature extraction method, and a probabilistic neural network is used as the classifier. We found that the highest classification accuracy (99.31%) could be achieved through nine optimally selected features out of all 72 extracted features. Moreover, the proposed PQD classification system demonstrated high performance in a noisy environment, as well as the real distribution system. When comparing the presented PQD classification system’s performance to previous studies, PQD classification accuracy using adaptive ABC-PSO as the optimal feature selection algorithm is considered to be at a high-range scale; therefore, the adaptive ABC-PSO algorithm can be used to classify the PQD in a practical electrical distribution system.


Sign in / Sign up

Export Citation Format

Share Document