Credit Card Fraud
Recently Published Documents


TOTAL DOCUMENTS

561
(FIVE YEARS 410)

H-INDEX

33
(FIVE YEARS 16)

Author(s):  
Upasana Mukherjee ◽  
Vandana Thakkar ◽  
Shawni Dutta ◽  
Utsab Mukherjee ◽  
Samir Kumar Bandyopadhyay

The growth of regularly generated data from many financial activities has significant implications for every corner of financial modelling. This study has investigated the utilization of these continuous growing data by a means of an automated process. The automated process can be developed by using Machine learning based techniques that analyze the data and gain experience from the underlying data. Different important domains of financial fields such as Credit card fraud detection, bankruptcy detection, loan default prediction, investment prediction, marketing and many more can be modelled by implementing machine learning methods. Among several machine learning based techniques, the use of parametric and non-parametric based methods are approached by this research. Two parametric models namely Logistic Regression, Gaussian Naive Bayes models and two non-parametric methods such as Random Forest, Decision Tree are implemented in this paper. All the mentioned models are developed and implemented in the field of Credit card fraud detection, bankruptcy detection, loan default prediction. In each of the aforementioned cases, the comparative study among the classification techniques is drawn and the best model is identified. The performance of each classifier on each considered domain is evaluated by various performance metrics such as accuracy, F1-score and mean squared error. In the credit card fraud detection model the decision tree classifier performs the best with an accuracy of 99.1% and, in the loan default prediction and bankruptcy detection model, the random forest classifier gives the best accuracy of  97% and 96.84% respectively.


InterConf ◽  
2021 ◽  
pp. 393-403
Author(s):  
Olexander Shmatko ◽  
Volodimir Fedorchenko ◽  
Dmytro Prochukhan

Today the banking sector offers its clients many different financial services such as ATM cards, Internet banking, Debit card, and Credit card, which allows attracting a large number of new customers. This article proposes an information system for detecting credit card fraud using a machine learning algorithm. Usually, credit cards are used by the customer around the clock, so the bank's server can track all transactions using machine learning algorithms. It must find or predict fraud detection. The dataset contains characteristics for each transaction and fraudulent transactions need to be classified and detected. For these purposes, the work proposes the use of the Random Forest algorithm.


Author(s):  
Imane Sadgali ◽  
Nawal Sael ◽  
Faouzia Benabbou

<span lang="EN-US">Now days, the analysis of the behavior of cardholders is one of the important fields in electronic payment. This kind of analysis helps to extract behavioral and transaction profile patterns that can help financial systems to better protect their customers. In this paper, we propose an intelligent machine learning (ML) system for rules generation. It is based on a hybrid approach using rough set theory for feature selection, fuzzy logic and association rules for rules generation. A score function is defined and computed for each transaction based on the number of rules, that make this transaction suspicious. This score is kind of risk factor used to measure the level of awareness of the transaction and to improve a card fraud detection system in general. The behavior analysis level is a part of a whole financial fraud detection system where it is combined to intelligent classification to improve the fraud detection. In this work, we also propose an implementation of this system integrating the behavioral layer. The system results obtained are very convincing and the consumed time by our system, per transaction was 6 ms, which prove that our system is able to handle real time process.</span>


Author(s):  
Samir Bandyopadhyay ◽  
Vandana Thakkar ◽  
Upasana Mukherjee ◽  
Shawni Dutta

The growth of regularly generated data from many financial activities has significant implications for every corner of financial modeling. This study has investigated the utilization of these continuous growing data by a means of an automated process. The automated process can be developed by using Machine learning based techniques that analyze the data and gain experience from the underlying data. Different important domains of financial fields such as Credit card fraud detection, bankruptcy detection, loan default prediction, investment prediction, marketing and many other financial models can be modeled by implementing machine learning models. Among several machine learning based techniques, the use of parametric and non-parametric based methods are approached by this research. Two parametric models namely Logistic Regression, Gaussian Naive Bayes models and two non-parametric methods such as Random Forest, Decision Tree are implemented in this paper. All the mentioned models are developed and implemented in the field of Credit card fraud detection, bankruptcy detection, loan default prediction. In each of the aforementioned cases, the comparative study among the classification techniques is drawn and the best model is identified. The performance of each classifier on each considered domain is evaluated by various performance metrics such as accuracy, recall, precision, F1-score and mean squared error. In the credit card fraud detection model the decision tree classifier performs the best with an accuracy of 99.1% and, in the loan default prediction and bankruptcy detection model, the random forest classifier gives the best accuracy of 97% and 96.84% respectively.


Author(s):  
Shalini S

Credit card fraud is a significant threat in the BFSI sector. This credit card fraud detection system analyzes user behavioral patterns and their location to identify any unusual patterns. This consists of user characteristics, which includes user spending styles as well as standard user geographic places to verify his identity. One of the user behavior patterns includes spending habits, usage patterns, etc. This system deals with user credit card data for various characteristics, which includes user country, usual spending procedures. Based upon previous transactions information of that person, the system recognizes unusual patterns in the payment method. The fraud detection system contains the past transaction data of each user. Based on this data, it identifies the standard user behavior patterns for individual users, and any deviation from those normal user patterns becomes a trigger for the detection system. If it detects any unusual patterns, then user will be required to undergo the security verification, which identifies the original user using QR code recognition system. In case of any unusual activity, the system not only raises alerts but it will block the user after three invalid attempts.


Author(s):  
Aman .

It is important that companies are able to identify fraudulent credit card transactions so that customers are not charged for items that they did not purchase. These problems can be handled with Data Science and its importance, along with Machine Learning. This project aim is to illustrate the modelling of a data set using machine learning with Credit Card. Our objective is to detect 100% of the fraudulent transactions while minimizing the incorrect fraud classifications. Credit Card Fraud Detection is a sample of classification. In this process, we have focused on analysing and pre-processing data sets as well as the deployment of multiple anomaly detection algorithms such as Local Outlier Factor and Isolation Forest algorithm on the PCA transformed Credit Card Transaction data.


Author(s):  
Kartik Madkaikar ◽  
◽  
Manthan Nagvekar ◽  
Preity Parab ◽  
Riya Raika ◽  
...  

Credit card fraud is a serious criminal offense. It costs individuals and financial institutions billions of dollars annually. According to the reports of the Federal Trade Commission (FTC), a consumer protection agency, the number of theft reports doubled in the last two years. It makes the detection and prevention of fraudulent activities critically important to financial institutions. Machine learning algorithms provide a proactive mechanism to prevent credit card fraud with acceptable accuracy. In this paper Machine Learning algorithms such as Logistic Regression, Naïve Bayes, Random Forest, K- Nearest Neighbor, Gradient Boosting, Support Vector Machine, and Neural Network algorithms are implemented for detection of fraudulent transactions. A comparative analysis of these algorithms is performed to identify an optimal solution.


Sign in / Sign up

Export Citation Format

Share Document