Depth and Temperature Control During Friction Stir Welding of 5 cm Thick Copper Canisters

Author(s):  
Lars Cederqvist ◽  
Olof Garpinger ◽  
Isak Nielsen
2014 ◽  
Vol 1019 ◽  
pp. 120-125
Author(s):  
D.G. Hattingh ◽  
Theo I. van Niekerk ◽  
Raymond Pothier

This research presents the potential for improved joint integrity of friction stir welding by controlling the plasticisation temperature in the weld nugget. During a typical FSW, temperature fluctuates with position along the length of the weld. Working from a basis that for all material and tool geometries, there is an Optimal Plasticisation Temperature (OPT), this paper provides a strategy for maintaining this optimal weld temperature by adjusting selected weld input parameters ensuring consistent joint quality, irrespective of component geometry or clamp configuration. This proposed methodology can also be used to determine the OPT for different FSW tool geometries and material combinations. Advanced monitoring and control strategies are essential to ensure that FSW can be made a more robust industrial process that can keep pace with the modern demand for more consistent production and reliability of welded structures. The potential lies in the possibility for an operator to now select an OPT point for a specific approved welding program and allow the welding platform to maintain the OPT via closed-loop temperature control which adjusts tool rotation and or tool traverse speed. This paper further reports on the potential of integration of a closed-loop temperature control algorithm for FSW. The system measures the temperature inside the FSW tool using thermocouple sensors (creating the feedback signal). The controller then applies a PID algorithm which in turn drives the spindle speed (and if necessary, tool traverse speed) in order to change the energy input rate to the weld for controlling plasticisation temperature.


2017 ◽  
Vol 93 (1-4) ◽  
pp. 1157-1171 ◽  
Author(s):  
A. Bachmann ◽  
J. Gamper ◽  
M. Krutzlinger ◽  
A. Zens ◽  
M. F. Zaeh

2019 ◽  
Vol 24 ◽  
Author(s):  
Ana Magalhães ◽  
Jeroen De Backer ◽  
Gunnar Bolmsjö

Abstract During Friction Stir Welding (FSW) of complex geometries, the thermal dissipation, induced by geometric features or the surrounding environment, may strongly affect the final weld quality. In order to guarantee a consistent weld quality for different conditions, in-process welding parameter adaptation is needed. This paper studies the effect of thermal dissipation, induced by the backing bar thermal conductivity, on the weld temperature and the temperature controller response to it. A new temperature sensor solution, the Tool-Workpiece Thermocouple (TWT) method, was applied to acquire online temperature measurements during welding. An FSW-robot equipped with temperature control, achieved by rotation speed adaptation, was used. AA7075-T6 lap joints were performed with and without temperature control. The cooling rate during welding was register plus macrographs and tensile tests were assessed. The controller demonstrated a fast response promoting the heat input necessary to maintain the set welding temperature. The results demonstrated that temperature control using the TWT method is suitable to achieve higher joint performance and provides a fast setup of optimal parameters for different environments.


Author(s):  
R. R. Varun Das ◽  
V. Kalaichelvi ◽  
R. Karthikeyan

Friction Stir welding is a solid state joining process that utilizes a rotating non-consumable tool to plastically deform and forge together parent metals. Welding can be controlled either by using Force, Temperature and Traverse or Seam Control methods. The presence of numerous parameters and conditional variations in FSW production environment can adversely affect weld quality making extensive automation processes impossible till date. The weld quality of FSW is closely related to the stability of the welding temperature. For such a non-linear complex process conventional control theory is not an appropriate choice. A fuzzy logic controller with a specially chosen triangular membership function has been suggested as an effective alternative approach. The aim of the present work includes dynamic modeling of a friction stir welding process and the use of a suitable Fuzzy tuned Control Strategy for temperature control. The Temperature at stir zone is measured using a K type Thermocouple. It has a sensitivity of 41μV/°C and also a wide variety of probes are available within its −200° C to +1250 °C range. The thermocouple is used by drilling a hole in the shank of the tool and letting it pass through it. The spindle speed is used as an appropriate variable to control temperature variations. The dynamic modeling and simulations were performed using Matlab whereas the variable values were derived during friction stir welding of aluminum.


MRS Bulletin ◽  
2019 ◽  
Vol 44 (8) ◽  
pp. 613-618 ◽  
Author(s):  
Kenneth Ross ◽  
Md. Reza-E-Rabby ◽  
Martin McDonnell ◽  
Scott A. Whalen

Abstract


Sign in / Sign up

Export Citation Format

Share Document