welding temperature
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 58)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 1049 ◽  
pp. 75-84
Author(s):  
Sergei Kurashkin ◽  
Daria Rogova ◽  
Alexander Lavrishchev ◽  
Vadim Sergeevich Tynchenko ◽  
Alexander Murygin

The article deals with the problem of obtaining the dependence of the product strength parameter on the welding time, welding temperature and pressure during mechanical tests, leak tests. The relevance of this work is due to the complexity of carrying out field experiments to identify dependencies. In particular, the complexity arises from the duration of diffusion welding and the high cost. Application of the method of regression analysis based on a non-compositional plan of the second order for three factors will allow to restore the dependence of the product strength parameter on the time during which welding was carried out, the temperature at which diffusion welding was carried out or could be carried out and on the applied pressure at which mechanical tests were carried out. In the current study, a non-compositional design of the second order for three factors was used - allowing to restore the dependence of the missing values of the strength of the product. The aim of the research is to improve the quality of mathematical modeling. Application of the proposed approach will make it possible to obtain the strength distribution function depending on time, temperature and pressure using the example of a product made of VT14 titanium alloy and 12X18H10T stainless steel. This will make it possible to obtain optimal parameters for the diffusion welding mode and to improve the quality of the resulting products.


2022 ◽  
Author(s):  
Z.J. Tan ◽  
Zhao Zhang

Abstract Additive Manufacturing (AM) is widely used to fabricate phononic crystals (PnCs) in recent years. Friction Stir Additive Manufacturing (FSAM) is a new-type solid state fabrication technology which is fusion free with low distortions. FSAM was selected to fabricate the designed PnCs. The manufactured specimen was distorted due to the temperature rise in the manufacturing process and the band gaps (BGs) were changed with the distortions. Results indicate that the band gap of the PnCs moves to be in higher frequency domain due to the residual distortions of the manufactured PnCs. The residual distortion of FSAM PnCs is 2.77 times smaller in comparison with the Tungsten Inert Gas (TIG) welding. So, the differences of the band gap between the designed PnCs and the FSAM specimen are only in the range of 0.15%- 0.55% due to the lower temperature rise in FSAM. The further analysis shows that the change of the BGs is caused by the growth of the inertia moment for the FSAM PnCs. With the increase of the rotating speed in FSAM, the residual distortion of the FSAM PnCs is increased due to the increase of the welding temperature. This can lead to the increase of the inertia moment, which is the key reason for the increase of the BG characteristics of the FSAM PnCs.


Author(s):  
Chang Li ◽  
Qingchun Huang ◽  
Yan Xu ◽  
Xing Han

The submerged arc surfacing process involves complex behaviors such as metal heat transfer, melting, flow, phase transformation, and solidification and involves the interaction of electric field, thermal field, magnetic field, and flow field. At present, it is impossible to reveal the transient mechanism of multi-field coupling in submerged arc surfacing by experience or trial and error, which is not conducive to shorten the development cycle and save the cost. Moreover, it is difficult to measure the molten pool velocity, von Mises stress, and phase transformation zone in real-time. However, these factors are the key to obtain a high-quality surfacing layer. Therefore, a three-dimensional mathematical model of heat force flow multi-field coupling for roller submerged arc surfacing is established in this article. The distribution and variation of welding temperature, von Mises stress, molten pool flow field, and phase transformation zone are revealed by solving the model. The maximum von Mises stress of the rollers during submerged arc surfacing is 432 MPa. The depth of the phase transformation is 2.50 mm, and the width is 1.98 mm. Zeiss-IGMA HD FESEM was used to observe the welding microstructure. The results show that the main microstructure is martensite and a small amount of ferrite.


Author(s):  
DongSheng Zhao ◽  
Liangliang Wu ◽  
TianFei Zhang ◽  
Lele Kong ◽  
YuJun Liu

Hot cracking is a serious problem in welding of Invar alloy. The weld hot cracking susceptibility of Invar was evaluated using pulsed laser welding on fish-bone sheet experiment. The pulse wave consisted of preheating pulse and welding pulse. Hot cracks that formed along the grain boundary propagated from the weld upper surface to the inside. The experiments show that adding a preheating pulse can effectively reduce the hot cracking susceptibility of Invar alloy. Finite Element Modeling (FEM) calculations and experimental measurement results show that the welding temperature gradient and cooling rate decrease with increasing preheating pulse duration. However, as the preheating pulse duration increases, the hot cracking susceptibility of the Invar alloy does not decrease all the time, but decreases first and then increases. This is because the increase of heat input leads to the increase of shrinkage plastic strain when the preheating pulse duration increases. The maximum tensile strength of the butt welded joint of the Invar alloy was 467.3 MPa, which is 92.3% of the base metal when the preheating pulse duration is 3 ms.


2021 ◽  
Vol 2141 (1) ◽  
pp. 012003
Author(s):  
Zhi Ling Wang

Abstract In this paper, we mainly introduce the research status and development trend of welding numerical simulation technology. It is mainly reviewed that the simulation of molten pool flow field, welding temperature field and mechanical field, welding deformation and residual stress, hydrogen diffusion analysis, carbon migration of dissimilar steel welded joints, special welding process, microstructure of welded joints and grain growth process of welding heat affected zone. Then we discuss the special welding process simulation technology and special software for welding simulation. Finally, the development of welding numerical simulation technology in China are concerned.


2021 ◽  
Author(s):  
Eyob Messele ◽  
Assefa Asmare Tsegaw

Abstract One of the recent novel joining mechanisms in the solid-state-welding process is Friction Stir Welding (FSW). The process is extensively used in joining similar and dissimilar materials as well. This research studied and found the optimum process parameters of FSW based on the temperature simulation results on a 5 mm 6061 Al alloy sheet with a butt joint configuration. Steady-state heat transfer analysis was performed using a transient thermal workbench to predict and identify the optimum parameters grounded on the simulation welding temperature result. The parameters are optimized using the hybrid Taguchi L9 orthogonal array and Grey relation analysis method with a larger is better quality characteristic. Mechanical properties of the weld joints' such as hardness and tensile strength, were studied at an ambient temperature. The result revealed that a higher rotational speed with a minimum traverse speed and taper threaded tool pin impart the optimum parameter settings. Analysis of variance (ANOVA) was carried out also to determine the effects of each process parameter. At a 95 % confidence interval, rotational and traverse speeds show significant characteristics. The joint efficiency reached 92.25% of the base metal at a maximum welding temperature. Additionally, the microstructure of the stir weld zone of the specimen was studied as well. Metallographic Characterization carried out using Scanning Electron Microscope (SEM) revealed the microstructure of the samples after the weld did not show any significant change with the base metal. Furthermore, this study scheme can be extended to thick non-ferrous, ferrous, and metal-based composite materials, too.


2021 ◽  
Author(s):  
Xiaohong Lu ◽  
Yihan Luan ◽  
Xiangyue Meng ◽  
Yu Zhou ◽  
Ning Zhao ◽  
...  

Abstract Friction stir welding (FSW) is a solid-state jointing technology, which has the advantages of high joint strength, low residual stress aXnd small deformation after welding. During the process of FSW, the welding temperature has an important effect on the quality of the weldment. Therefore, the heat generation model of FSW of medium thickness 2219 aluminum alloy is established based on the friction heat generation at the interface between the tool and the workpiece and the plastic deformation heat generation of the weldment material near the tool. The heat transfer model is set under the premise of considering heat conduction, thermal convection, and thermal radiation. Using JMatPro technology, the temperature-related material parameters of 2219 aluminum alloy are calculated based on the material composition, and the heat generation model is imported into the ABAQUS simulation software based on the DFLUX subroutine, and the establishment of the FSW thermodynamic model is realized. The effectiveness of the model is verified by FSW experiments. The thermodynamic model takes into account both heat generation (friction heat generation and plastic deformation heat generation) and heat transfer (heat conduction, thermal convection and thermal radiation), so it has a high prediction accuracy. Based on the FSW thermodynamic model, the influence of welding parameters on temperature distribution is explored, subsequently the influence of welding temperature on mechanical properties of welded joint are also studied. The research can provide guidance for predicting and characterizing the temperature distribution and the improvement of mechanical performance of FSW.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1325
Author(s):  
Alexander Viktorovich Lavrishchev ◽  
Sergei Viktorovich Prokopev ◽  
Vadim Sergeevich Tynchenko ◽  
Aleksander Vladimirovich Myrugin ◽  
Vladislav Viktorovich Kukartsev ◽  
...  

This paper describes the technological process of manufacturing bimetallic billets, which are capable of operating at high pressures, high temperatures, and in corrosive environments, from VT-14 titanium alloy and 12KH18N10T stainless steel. To obtain a joint with a strength of at least 350 MPa, the diffusion welding method was used, which makes it possible to obtain equal-strength joints using dissimilar materials. The connection of VT-14 titanium alloy with 12KH18N10T stainless steel after obtaining bimetallic billets with the desired properties was investigated. We studied the welded VT-14 and 12KH18N10T joint obtained by diffusion welding through intermediate spacers of niobium Nb (NbStrip-1) and copper Cu (M1). On the basis of our investigations, the optimum welding modes are as follows: welding temperature: 1137 K; welding pressure: 18 MPa; welding time: 1200 s. Mechanical tests, tightness tests, and metallographic, factographic, and micro-X-ray structural studies were carried out, the results of which indicate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document