Structural Vibration Control Using High Strength and Damping Capacity Shape Memory Alloys

Author(s):  
Soheil Saedi ◽  
Farzad S. Dizaji ◽  
Osman E. Ozbulut ◽  
Haluk E. Karaca
1993 ◽  
Vol 115 (1) ◽  
pp. 129-135 ◽  
Author(s):  
C. Liang ◽  
C. A. Rogers

Shape memory alloys (SMAs) have several unique characteristics, including their Young’s modulus-temperature relations, shape memory effects, and damping characteristics. The Young’s modulus of the high-temperature austenite of SMAs is about three to four times as large as that of low-temperature martensite. Therefore, a spring made of shape memory alloy can change its spring constant by a factor of three to four. Since a shape memory alloy spring can vary its spring constant, provide recovery stress (shape memory effect), or be designed with a high damping capacity, it may be useful in adaptive vibration control. Some vibration control concepts utilizing the unique characteristics of SMAs will be presented in this paper. Shape memory alloy springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some design approaches based upon linear theory have been proposed for shape memory alloy springs. A more accurate design method for SMA springs based on a new nonlinear thermomechanical constitutive relation of SMA is also presented in this paper.


2003 ◽  
Vol 32 (3) ◽  
pp. 483-494 ◽  
Author(s):  
Yu-Lin Han ◽  
Q. S. Li ◽  
Ai-Qun Li ◽  
A. Y. T. Leung ◽  
Ping-Hua Lin

2014 ◽  
Vol 577 ◽  
pp. 66-70
Author(s):  
Jin Sheng He ◽  
She Liang Wang ◽  
Guang Yaun Weng

In order to effectively use Magnetically Controlled Shape Memory Alloy (MSMA) for vibration control in civil engineering structure, the deformation mechanism and dynamic characteristics of the MSMA were studied; research methods apply to the constitutive relation of vibration control in civil engineering structure is given. Based on the study about MSMA vibration controller and its application in structural vibration control in engineering, MSMA in structure vibration control application prospect and development direction are introduced. At the same time, for the difficulties existing in the application are discussed in this paper. The results prove that MSMA materials in structural vibration control are of important value.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 573
Author(s):  
Caikui Lin ◽  
Zeqiang Wang ◽  
Xin Yang ◽  
Haijun Zhou

NiTi Shape Memory Alloy (SMA) has been widely studied in the field of structural vibration control, and the results show that the fatigue life of the SMA is a key factor of the vibration control system. In this paper, the fatigue test is carried out in Dynamic Mechanical Analyzer (DMA + 1000) to analyze how the changes of temperature and strain amplitude affecting the main fatigue parameters. The test results show that when the test temperature is higher than Austenite finish temperature (Af), the fatigue properties of SMAs are significantly affected by temperature. With the increase of temperature, the fatigue life becomes shorter and the energy consumption decreases, while the area of hysteresis curve, the stress amplitude, and effective modulus increase.


2009 ◽  
Vol 79-82 ◽  
pp. 187-190
Author(s):  
Guang Yuan Weng ◽  
She Liang Wang

Magnetic Shape Memory Alloys (MSMA) are attractive active materials because they have large strain (about 10%) as the classical shape memory alloys (SMA), but can provide a 100 times shorter time response, so, MSAM will be the ideal material of structural engineering vibration control. The main disadvantages of MSMA based actuators are the brittleness of the single-crystal material, the difficulty to apply the strong magnetic field required to obtain sufficient strain and the nonlinear behaviors. In this paper a novel MSMA based actuator changing the disadvantage of the hysteretic behaviors into an advantage. This device includes two pieces of MSMA material act in an opposite way. The hysteretic behavior of the material permits to keep a stable position when no current is applied. The use of current pulses permits also a reduction of the coil heating (Joule effect losses) and a reduction of the magnetic circuit size. The performances and characteristics of MSMA are between these of classical SMA and these of piezo-electric materials. A thermo-magneto-mechanical model of the actuator is currently in development in order to design an efficient control law well adapted to the specific MSMA properties.


Sign in / Sign up

Export Citation Format

Share Document