DKGBuilder: An Architecture for Building a Domain Knowledge Graph from Scratch

Author(s):  
Yan Fan ◽  
Chengyu Wang ◽  
Guomin Zhou ◽  
Xiaofeng He
2021 ◽  
Vol 1744 (4) ◽  
pp. 042155
Author(s):  
Fan Ye ◽  
Tie Fu ◽  
Lin Gong ◽  
Jun Gao

2021 ◽  
Vol 13 (5) ◽  
pp. 124
Author(s):  
Jiseong Son ◽  
Chul-Su Lim ◽  
Hyoung-Seop Shim ◽  
Ji-Sun Kang

Despite the development of various technologies and systems using artificial intelligence (AI) to solve problems related to disasters, difficult challenges are still being encountered. Data are the foundation to solving diverse disaster problems using AI, big data analysis, and so on. Therefore, we must focus on these various data. Disaster data depend on the domain by disaster type and include heterogeneous data and lack interoperability. In particular, in the case of open data related to disasters, there are several issues, where the source and format of data are different because various data are collected by different organizations. Moreover, the vocabularies used for each domain are inconsistent. This study proposes a knowledge graph to resolve the heterogeneity among various disaster data and provide interoperability among domains. Among disaster domains, we describe the knowledge graph for flooding disasters using Korean open datasets and cross-domain knowledge graphs. Furthermore, the proposed knowledge graph is used to assist, solve, and manage disaster problems.


2021 ◽  
Author(s):  
Jian Xie ◽  
Xi Li ◽  
Da Hong Xu ◽  
Hua Ling Zhou ◽  
Mengzi Liang ◽  
...  

Author(s):  
Peilian Zhao ◽  
Cunli Mao ◽  
Zhengtao Yu

Aspect-Based Sentiment Analysis (ABSA), a fine-grained task of opinion mining, which aims to extract sentiment of specific target from text, is an important task in many real-world applications, especially in the legal field. Therefore, in this paper, we study the problem of limitation of labeled training data required and ignorance of in-domain knowledge representation for End-to-End Aspect-Based Sentiment Analysis (E2E-ABSA) in legal field. We proposed a new method under deep learning framework, named Semi-ETEKGs, which applied E2E framework using knowledge graph (KG) embedding in legal field after data augmentation (DA). Specifically, we pre-trained the BERT embedding and in-domain KG embedding for unlabeled data and labeled data with case elements after DA, and then we put two embeddings into the E2E framework to classify the polarity of target-entity. Finally, we built a case-related dataset based on a popular benchmark for ABSA to prove the efficiency of Semi-ETEKGs, and experiments on case-related dataset from microblog comments show that our proposed model outperforms the other compared methods significantly.


Author(s):  
Gang Huang ◽  
Man Yuan ◽  
Chun-Sheng Li ◽  
Yong-he Wei

Firstly, this paper designs the process of personalized recommendation method based on knowledge graph, and constructs user interest model. Second, the traditional personalized recommendation algorithms are studied and their advantages and disadvantages are analyzed. Finally, this paper focuses on the combination of knowledge graph and collaborative filtering recommendation algorithm. They are effective to solve the problem where [Formula: see text] value is difficult to be determined in the clustering process of traditional collaborative filtering recommendation algorithm as well as data sparsity and cold start, utilizing the ample semantic relation in knowledge graph. If we use RDF data, which is distributed by the E and P (Exploration and Development) database based on the petroleum E and P, to verify the validity of the algorithm, the result shows that collaborative filtering algorithm based on knowledge graph can build the users’ potential intentions by knowledge graph. It is enlightening to query the information of users. In this way, it expands the mind of users to accomplish the goal of recommendation. In this paper, a collaborative filtering algorithm based on domain knowledge atlas is proposed. By using knowledge graph to effectively classify and describe domain knowledge, the problems are solved including clustering and the cold start in traditional collaborative filtering recommendation algorithm. The better recommendation effect has been achieved.


2019 ◽  
Vol 1 (3) ◽  
pp. 201-223 ◽  
Author(s):  
Guohui Xiao ◽  
Linfang Ding ◽  
Benjamin Cogrel ◽  
Diego Calvanese

In this paper, we present the virtual knowledge graph (VKG) paradigm for data integration and access, also known in the literature as Ontology-based Data Access. Instead of structuring the integration layer as a collection of relational tables, the VKG paradigm replaces the rigid structure of tables with the flexibility of graphs that are kept virtual and embed domain knowledge. We explain the main notions of this paradigm, its tooling ecosystem and significant use cases in a wide range of applications. Finally, we discuss future research directions.


2020 ◽  
pp. 016555152093251
Author(s):  
Haoze Yu ◽  
Haisheng Li ◽  
Dianhui Mao ◽  
Qiang Cai

In order to achieve real-time updating of the domain knowledge graph and improve the relationship extraction ability in the construction process, a domain knowledge graph construction method is proposed. Based on the structured knowledge in Wikipedia’s classification system, we acquire concepts and instances contained in subject areas. A relationship extraction algorithm based on co-word analysis is intended to extract the classification relationships in semi-structured open labels. A Bi-GRU remote supervised relationship extraction model based on a multiple-scale attention mechanism and an improved cross-entropy loss function is proposed to obtain the non-classification relationships of concepts in unstructured texts. Experiments show that the proposed model performs better than the existing methods. Based on the obtained concepts, instances and relationships, a domain knowledge graph is constructed and the domain-independent nodes and relationships contained in them are removed through a vector variance algorithm. The effectiveness of the proposed method is verified by constructing a food domain knowledge graph based on Wikipedia.


Sign in / Sign up

Export Citation Format

Share Document