One-Shot Verifiable Encryption from Lattices

Author(s):  
Vadim Lyubashevsky ◽  
Gregory Neven
Author(s):  
R. Anitha ◽  
R. S. Sankarasubramanian

This chapter presents a new simple scheme for verifiable encryption of elliptic curve digital signature algorithm (ECDSA). The protocol we present is an adjudicated protocol, that is, the trusted third party (TTP) takes part in the protocol only when there is a dispute. This scheme can be used to build efficient fair exchanges and certified email protocols. In this paper we also present the implementation issues. We present a new algorithm for multiplying two 2n bits palindromic polynomials modulo xp–1 for prime p = 2n + 1 for the concept defined in Blake, Roth, and Seroussi (1998), and it is compared with the Sunar-Koc parallel multiplier given in Sunar and Koc (2001).


1998 ◽  
Vol 5 (32) ◽  
Author(s):  
Jan Camenisch ◽  
Ivan B. Damgård

We generalise and improve the security and efficiency of the verifiable encryption scheme of Asokan et al., such that it can rely on more general assumptions, and can be proven secure without relying on random oracles. We show a new application of verifiable encryption to group signatures with separability, these schemes do not need special purpose keys but can work with a wide range of signature and encryption schemes already in use. Finally, we extend our basic primitive to verifiable threshold and group encryption. By encrypting digital signatures this way, one gets new solutions to the verifiable signature sharing problem.


2019 ◽  
Vol 2019 (3) ◽  
pp. 149-169 ◽  
Author(s):  
Riham AlTawy ◽  
Guang Gong

Abstract A major line of research on blockchains is geared towards enhancing the privacy of transactions through anonymity using generic non-interactive proofs. However, there is a good cluster of application scenarios where complete anonymity is not desirable and accountability is in fact required. In this work, we utilize non-interactive proofs of knowledge of elliptic curve discrete logarithms to present membership and verifiable encryption proof, which offers plausible anonymity when combined with the regular signing process of the blockchain transactions. The proof system requires no trusted setup, both its communication and computation complexities are linear in the number of set members, and its security relies on the discrete logarithm assumption. As a use-case for this scenario, we present Mesh which is a blockchain-based framework for supply chain management using RFIDs. Finally, the confidentiality of the transacted information is realized using a lightweight key chaining mechanism implemented on RFIDs. We formally define and prove the main security features of the protocol, and report on experiments for evaluating the performance of the modified transactions for this system.


Sign in / Sign up

Export Citation Format

Share Document