Optimal Design of a High-Speed Pick-and-Place Cable-Driven Parallel Robot

Author(s):  
Zhaokun Zhang ◽  
Zhufeng Shao ◽  
Liping Wang ◽  
Albert J. Shih
2017 ◽  
Vol 46 ◽  
pp. 48-57 ◽  
Author(s):  
Jiao Mo ◽  
Zhu-Feng Shao ◽  
Liwen Guan ◽  
Fugui Xie ◽  
Xiaoqiang Tang

2016 ◽  
Vol 8 (6) ◽  
Author(s):  
Tian Huang ◽  
Pujun Bai ◽  
Jiangping Mei ◽  
Derek G. Chetwynd

This paper presents a comprehensive methodology for ensuring the geometric pose accuracy of a 4DOF high-speed pick-and-place parallel robot having an articulated traveling plate. The process is implemented by four steps: (1) formulation of the error model containing all possible geometric source errors; (2) tolerance design of the source errors affecting the uncompensatable pose accuracy via sensitivity analysis; (3) identification of the source errors affecting the compensatable pose accuracy via a simplified model and distance measurements; and (4) development of a linearized error compensator for real-time implementation. Experimental results show that a tilt angular accuracy of 0.1/100 and a volumetric/rotational accuracy of 0.5 mm/±0.8 deg of the end-effector can be achieved over the cylindrical task workspace.


Author(s):  
Haihong Li ◽  
Zhiyong Yang

The dynamic modeling and analysis of a 2-DOF translational parallel robot for high-speed pick-and-place operation was presented. Considering the flexibility of all links, the governing equation of motion of a flexible link is formulated in the floating frame of reference using Euler-Lagrange method. A kineto-elasto dynamic model of the system is achieved, ready for modal analysis. Simulation in FEM software showed the similar modes with above computational result in typical location and rotation. The dynamic experiment presented the dominant modes and proved the theoretical analysis and simulation. The Diamond robot used in Lithium-ion battery sorting was taken as an example to demonstrate how to finish above studies. The result shows that the mechanism has good dynamic performance. The work is available for all parallel robots with flexible links.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Gang Han ◽  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Qizhi Meng ◽  
Sai Zhang

Abstract Parameters optimization is complicated by various parameters and nonlinear design problems. In this paper, the interaction mechanism of motion/force transmissibility and various parameters on normalized motor torque and speed of a four degrees-of-freedom (4-DOF) high-speed parallel robot is analyzed. Based on this interaction mechanism, evaluation indices of acceleration capacity, speed ability, and adept cycle time are proposed. Through combining these indices with task requirements and technical criteria of driving systems, the technology-oriented constraints are set up and a parameter optimization method is proposed. With this method, the dimensional parameters, driving system specifications, and work pose of the robot have been synchronously optimized to ensure low driving torque and high pick-and-place frequency. This synchronous optimal design method is general and can be further applied to parameter optimization for different types of parallel robots.


Author(s):  
Jinwoo Jung ◽  
Jinlong Piao ◽  
Eunpyo Choi ◽  
Jong-Oh Park ◽  
Chang-Sei Kim

Abstract A cable-driven parallel robot (CDPR) consists of an end-effector, flexible lightweight cables, pulleys, winches, and a rigid base frame. As opposed to the rigid links of the traditional serial robots and parallel robots, the flexible lightweight cables allow the CDPR to easily achieve the high speed, heavy payload manipulation, and scalable workspace. Especially, the conventional high-speed pick and place operation can be realized due to the lightweight of its flexible cables. However, the flexibility of the lightweight cables can introduce a considerable vibration problem to the high speed cable robot system. One of main causes can be a cable tension difference between initial pre-tension and winding tension around a drum of the winch-motor actuator. To effectively investigate the effect of the tension around the drum on the high speed manipulation of the cable robot system, the spatial eight-cable high speed cable robot was reduced to the horizontal two cable system. The reduction of the number of the cable enables us to minimize the influences from the other factors such as the cable sagging and the geometric errors. A series of experiments was conducted using the combinations of the low and high initial pre-tensions and low and high tensions around the drum. The experimental results clearly show that the low tension around the drum can cause the vibration problem during the high speed pick and place operation. Also, it demonstrates that securing the drum tension similar to the initial pre-tension can effectively reduce the magnitude of the vibration.


CIRP Annals ◽  
2014 ◽  
Vol 63 (1) ◽  
pp. 185-188 ◽  
Author(s):  
Y.H. Li ◽  
Y. Ma ◽  
S.T. Liu ◽  
Z.J. Luo ◽  
J.P. Mei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document