A Life Design Perspective on the Work to Retirement Transition

Author(s):  
Ariane Froidevaux
2020 ◽  
pp. oemed-2020-106532
Author(s):  
Kristin Suorsa ◽  
Anna Pulakka ◽  
Tuija Leskinen ◽  
Jaana Pentti ◽  
Jussi Vahtera ◽  
...  

BackgroundProlonged sedentary behaviour is associated with a higher risk of cardiometabolic diseases. This longitudinal study examined changes in daily total, prolonged (≥30 min) and highly prolonged (≥60 min) sedentary time across the transition to retirement by gender and occupational status.MethodsWe included 689 aging workers (mean (SD) age before retirement 63.2 (1.6) years, 85% women) from the Finnish Retirement and Aging Study (FIREA). Sedentary time was measured annually using a wrist-worn triaxial ActiGraph accelerometer before and after retirement with on average 3.4 (range 2–4) measurement points.ResultsWomen increased daily total sedentary time by 22 min (95% CI 13 to 31), prolonged sedentary time by 34 min (95% CI 27 to 42) and highly prolonged sedentary time by 15 min (95% CI 11 to 20) in the transition to retirement, and remained at the higher level of sedentary time years after retirement. The highest increase in total and prolonged sedentary time was observed among women retiring from manual occupations. Men had more total and prolonged sedentary time compared with women before and after retirement. Although no changes in men’s sedentary time were observed during the retirement transition, there was a gradual increase of 33 min (95% CI 6 to 60) in prolonged sedentary time from pre-retirement years to post-retirement years.ConclusionThe transition to retirement was accompanied by an abrupt increase in prolonged sedentary time in women but a more gradual increase in men. The retirement transition may be a suitable time period for interventions aiming to decrease sedentary behaviour.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 721
Author(s):  
Jonas Niklewski ◽  
Philip Bester van Niekerk ◽  
Christian Brischke ◽  
Eva Frühwald Hansson

Performance-based, service-life design of wood has been the focus of much research in recent decades. Previous works have been synthesized in various factorized design frameworks presented in the form of technical reports. Factorization does not consider the non-linear dependency between decay-influencing effects, such as between detail design and climate variables. The CLICKdesign project is a joint European effort targeting digital, performance-based specification for service-life design (SLD) of wood. This study evaluates the feasibility of using a semi-empirical moisture model (SMM) as a basis for a digital SLD framework. The performance of the SMM is assessed by comparison against a finite element model (FEM). In addition, two different wood decay models (a logistic, LM, and simplified logistic model (SLM)) are compared. While discrepancies between the SMM and FEM were detected particularly at high wood moisture content, the overall performance of the SMM was deemed sufficient for the application. The main source of uncertainty instead stems from the choice of wood decay model. Based on the results, a new method based on pre-calculated time series, empirical equations, and interpolation is proposed for predicting the service life of wood. The method is fast and simple yet able to deal with non-linear effects between weather variables and the design of details. As such, it can easily be implemented as part of a digital design guideline to provide decision support for architects and engineers, with less uncertainty than existing factorized guidelines.


Sign in / Sign up

Export Citation Format

Share Document