A Novel Data-Driven Fault Diagnosis Method Based on Deep Learning

Author(s):  
Yuyan Zhang ◽  
Liang Gao ◽  
Xinyu Li ◽  
Peigen Li
Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3521 ◽  
Author(s):  
Funa Zhou ◽  
Po Hu ◽  
Shuai Yang ◽  
Chenglin Wen

Rotating machinery usually suffers from a type of fault, where the fault feature extracted in the frequency domain is significant, while the fault feature extracted in the time domain is insignificant. For this type of fault, a deep learning-based fault diagnosis method developed in the frequency domain can reach high accuracy performance without real-time performance, whereas a deep learning-based fault diagnosis method developed in the time domain obtains real-time diagnosis with lower diagnosis accuracy. In this paper, a multimodal feature fusion-based deep learning method for accurate and real-time online diagnosis of rotating machinery is proposed. The proposed method can directly extract the potential frequency of abnormal features involved in the time domain data. Firstly, multimodal features corresponding to the original data, the slope data, and the curvature data are firstly extracted by three separate deep neural networks. Then, a multimodal feature fusion is developed to obtain a new fused feature that can characterize the potential frequency feature involved in the time domain data. Lastly, the fused new feature is used as the input of the Softmax classifier to achieve a real-time online diagnosis result from the frequency-type fault data. A simulation experiment and a case study of the bearing fault diagnosis confirm the high efficiency of the method proposed in this paper.


2021 ◽  
Vol 11 (23) ◽  
pp. 11116
Author(s):  
Ke Zheng ◽  
Guozhu Jia ◽  
Linchao Yang ◽  
Chunting Liu

In the fault diagnosis of UAVs, extremely imbalanced data distribution and vast differences in effects of fault modes can drastically affect the application effect of a data-driven fault diagnosis model under the limitation of computing resources. At present, there is still no credible approach to determine the cost of the misdiagnosis of different fault modes that accounts for the interference of data distribution. The performance of the original cost-insensitive flight data-driven fault diagnosis models also needs to be improved. In response to this requirement, this paper proposes a two-step ensemble cost-sensitive diagnosis method based on the operation and maintenance data of UAV. According to the fault criticality from FMECA information, we defined a misdiagnosis hazard value and calculated the misdiagnosis cost. By using the misdiagnosis cost, a static cost matrix could be set to modify the diagnosis model and to evaluate the performance of the diagnosis results. A two-step ensemble cost-sensitive method based on the MetaCost framework was proposed using stratified bootstrapping, choosing LightGBM as meta-classifiers, and adjusting the ensemble form to enhance the overall performance of the diagnosis model and reduce the occupation of the computing resources while optimizing the total misdiagnosis cost. The experimental results based on the KPG component data of a large fixed-wing UAV show that the proposed cost-sensitive model can effectively reduce the total cost incurred by misdiagnosis, without putting forward excessive requirements on the computing equipment under the condition of ensuring a certain overall level of diagnosis performance.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 66595-66608 ◽  
Author(s):  
Tiancheng Shi ◽  
Yigang He ◽  
Tao Wang ◽  
Bing Li

2020 ◽  
Vol 45 (24) ◽  
pp. 13483-13495 ◽  
Author(s):  
Xuexia Zhang ◽  
Jingzhe Zhou ◽  
Weirong Chen

Sign in / Sign up

Export Citation Format

Share Document