Data-driven fault diagnosis for PEMFC systems of hybrid tram based on deep learning

2020 ◽  
Vol 45 (24) ◽  
pp. 13483-13495 ◽  
Author(s):  
Xuexia Zhang ◽  
Jingzhe Zhou ◽  
Weirong Chen
Author(s):  
Huixin Yang ◽  
Xiang Li ◽  
Wei Zhang

Abstract Despite the rapid development of deep learning-based intelligent fault diagnosis methods on rotating machinery, the data-driven approach generally remains a "black box" to researchers, and its internal mechanism has not been sufficiently understood. The weak interpretability significantly impedes further development and applications of the effective deep neural network-based methods. This paper contributes efforts to understanding the mechanical signal processing of deep learning on the fault diagnosis problems. The diagnostic knowledge learned by the deep neural network is visualized using the neuron activation maximization and the saliency map methods. The discriminative features of different machine health conditions are intuitively observed. The relationship between the data-driven methods and the well-established conventional fault diagnosis knowledge is confirmed by the experimental investigations on two datasets. The results of this study can benefit researchers on understanding the complex neural networks, and increase the reliability of the data-driven fault diagnosis model in the real engineering cases.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5150
Author(s):  
Shiza Mushtaq ◽  
M. M. Manjurul Islam ◽  
Muhammad Sohaib

This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented.


2019 ◽  
Vol 26 (3) ◽  
pp. 75-81
Author(s):  
Davor Kolar ◽  
Dragutin Lisjak ◽  
Michał Pająk

Abstract One of the most important subsystems of the vehicles and machines operating currently in industry and transportation are the rotating subsystems. During the operation, due to the forcing factors influence, the technical state of them is changing and the failure can occur. Fault diagnosis is maintenance task considered as an essential in such subsystems, since possibility of an early detection and diagnosis of the faulty condition can save both time and money. To do this the analysis of the subsystems vibrations is performed. The identified technical state should be considered in a context of the ability and different inability states. Therefore, the first step of the diagnostic procedure is the ability and different inability states identification. Traditional data-driven techniques of fault diagnosis require signal processing for feature extraction, as they are unable to work with raw signal data, consequently leading to need for both expert knowledge and human work. The emergence of deep learning architectures in condition-based maintenance promises to ensure high performance fault diagnosis while lowering necessity for expert knowledge and human work. This article presents authors initial research in deep learning-based data-driven fault diagnosis of rotating subsystems. The proposed technique input raw three-axis accelerometer signal as high-definition image into deep learning layers, which automatically extract signal features, enabling high classification accuracy.


2021 ◽  
Vol 5 (4) ◽  
pp. 37-53
Author(s):  
Zurana Mehrin Ruhi ◽  
Sigma Jahan ◽  
Jia Uddin

In the fourth industrial revolution, data-driven intelligent fault diagnosis for industrial purposes serves a crucial role. In contemporary times, although deep learning is a popular approach for fault diagnosis, it requires massive amounts of labelled samples for training, which is arduous to come by in the real world. Our contribution to introduce a novel comprehensive intelligent fault detection model using the Case Western Reserve University dataset is divided into two steps. Firstly, a new hybrid signal decomposition methodology is developed comprising Empirical Mode Decomposition and Variational Mode Decomposition to leverage signal information from both processes for effective feature extraction. Secondly, transfer learning with DenseNet121 is employed to alleviate the constraints of deep learning models. Finally, our proposed novel technique surpassed not only previous outcomes but also generated state-of-the-art outcomes represented via the F1 score.


Sign in / Sign up

Export Citation Format

Share Document